Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2918
標題: 超高溫水氣轉化反應觸媒與膜反應器合成氣產氫之實驗探討
Experimental Study on Ultrahigh Temperature Water-gas Shift Catalysts and Membrane Reactors for Hydrogen Production from Syngas
作者: 林筵翔
Lin, Yen-Hsiang
關鍵字: 超高溫;ultrahigh temperature;水氣轉化反應;CO轉化率;鈀銀合金;膜反應器;water-gas shift (WGS) reaction;CO conversion;Pd-Ag alloy;membrane reactor
出版社: 機械工程學系所
引用: 【1】2012年能源產業技術白皮書,經濟部能源局。 【2】徐恆文,煤炭氣化發電之能源優勢,工業技術研究院,2004。 【3】曲新生、陳發林、呂錫民,產氫與儲氫技術,五南圖書出版股份有限公司, 台北市,中華民國,2007。 【4】Rezaiyan J, Cheremisinoff NP, Gasification Technologies:A Primer for Engineers and Scientists, Taylor & Francis Group, Broken Sound Parkway, NW, USA, 2005. 【5】Mondal P, Dang GS, Garg MO. Syngas production through gasification and cleanup for downstream applications - Recent developments. Fuel Processing Technology 2011 ; 92 : 1395-1410. 【6】Haryanto A, Fernando S, Adhikari S. Ultrahigh temperature water gas shift catalysts to increase hydrogen yield from biomass gasification. Catalysis Today 2007 ; 129 : 269-274. 【7】Haryanto A, Fernando SD, Filip To SD, Steele PH, Pordesimo L, Adhikari S. Hydrogen production through the water-gas shift reaction: Thermodynamic equilibrium versus experimental results over supported Ni catalysts. Energy & Fuels 2009 ; 23 : 3097-3102. 【8】Sun Y, Hla SS, Duffy GJ, Cousins AJ, French D, Morpeth LD, Edwards JH, Roberts DG. High temperature water-gas shift Cu catalysts supported on Ce-Al containing materials for the production of hydrogen using simulated coal-derived syngas. Catalysis Communications 2010 ; 12 : 304-309. 【9】Panagiotopoulou P, Kondarides DI. A comparative study of the water-gas shift activity of Pt catalysts supported on single and composite metal oxide carriers. Catalysis Today 2007 ; 127 : 319-329. 【10】Alvarez-Galvan MC, Navarro RM, Rosa F, Briceno Y, Ridao MA, Fierro JLG. Hydrogen production for fuel cell by oxidative reforming of diesel surrogate : Influence of ceria and/or lanthana over the activity of Pt/Al2O3 catalysts. Fuel 2008 ; 87 : 2502–2511. 【11】Hwang KR, Ihm SK, Park JS. Enhanced CeO2-supported Pt catalyst for water–gas shift reaction. Fuel Processing Technology 2010 ; 91 : 729–736. 【12】Soongprasit K, Aht-Ong D, Sricharoenchaikul V, Atong D. Synthesis and catalytic activity of sol-gel derived La-Ce-Ni perovskite mixed oxide on steam reforming of toluene. Current Applied Physics 2012 ; 12 : 80-88. 【13】Knapton AG. Palladium alloys for hydrogen diffusion membranes. Platinum Metals Rev 1977 ; 21 : 44-50. 【14】Iyoha OU. H2 production in palladium & palladium-copper membrane reactors at 1173K in the presence of H2S : University of Pittsburgh, 2007. 【15】Peters TA, Kaleta T, Stange M, Bredesen R. Hydrogen transport through a selection of thin Pd-alloy membranes : membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures. Catalysis Today 2012 ; 193 : 8-12. 【16】Lee DW, Yoon-Gyu Lee YG, Nam SE, Ihm SK, Lee KH. Study on the variation of morphology and separation behavior of the stainless steel supported membranes at high temperature. Journal of Membrane Science 2003 ; 220 : 137-153. 【17】Ryi SK, Xu N, Li A, Lim CJ, Grace JR. Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTA-free bath. International Journal of hydrogen energy 2010 ; 35 : 2328-2335. 【18】Bosko ML, Ojeda F, Lombardo EA, Cornaglia LM. NaA zeolite as an effective diffusion barrier in composite Pd/PSS membranes. Journal of Membrane Science 2009 ; 331 : 57-65. 【19】Ayturk ME, Mardilovich IP, Engwall EE, Ma YH. Synthesis of composite Pd-porous stainless steel (PSS) membranes with a Pd/Ag intermetallic diffusion barrier. Journal of Membrane Science 2006 ; 285 : 385-394. 【20】Adhikari S, Fernando S, Haryanto A. A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin. Energy & Fuels 2007 ; 21 : 2306-2310. 【21】Itoh N, Shindo Y, Haray K. Ideal flow models for palladium membrane reactor. Journal of Chemical Engineering of Japan 1990 ; 23 : 420-426. 【22】Ledjeff-Hey K, Formanski V, Kalk T, Roes J. Compact hydrogen production systems for solid polymer fuel cells. Journal of Power Sources 1998 ; 71 : 199-207. 【23】Shu J, Grandjean BPA, van Neste A, Kaliaguine S. Catalytic palladium-based membrane reactors : A review. Can J Chem Eng 1991 ; 69 : 1036-1060. 【24】Checchetto R, Bazzanella N, Patton B, Miotello A. Palladium membranes prepared by r.f. magnetron sputtering for hydrogen purification. Surf Coat Technol 2004 ; 177-178 : 73-79. 【25】Jun CS, Lee KH. Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method (cold-wall). Journal of Membrane Science 2000 ; 176 : 121-130. 【26】Li ZY, Maeda H, Kusakabe K, Morooka S, Anzai H, Akiyama S. Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method. Journal of Membrane Science 1993 ; 78 : 247-254. 【27】Nam SE, Lee SH, Lee KH. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition. Journal of Membrane Science ; 153 : 163-173. 【28】Rothenberge KS, Cugini AV, Howard BH, Killmeyer RP, Ciocco MV, Morreale BD, Enick RM, Bustamante F, Mardilovich IP, Ma YH. High pressure hydrogen permeance of porous stainless steel coated with a thin palladium film via electroless plating. Journal of Membrane Science 2004 ; 244 : 55-68. 【29】Shi Z, Wu S, Szpunar JA. Microstructure transformation of Pd membrane deposited on a porous Inconel substrate in hydrogen permeation at elevated temperature. Journal of Membrane Science 2006 ; 284 : 424-430. 【30】Li A, Grace JR, Lim CJ. Preparation of thin Pd-based composite membrane on planar metallic substrate Part II. Preparation of membranes by electroless plating and characterization. Journal of Membrane Science 2007 ; 306 : 159-165.
摘要: 
本研究第一部分為開發適用於超高溫水氣轉化反應之觸媒,藉由改變觸媒的成分、促進劑的摻雜比例以進行觸媒性能測試。實驗於超高溫(750-850℃)環境中操作,透過改變不同的進料水碳莫耳比與長時間的操作以得知觸媒的一氧化碳轉化效果、氫氣產量與熱穩定性。在WGS觸媒研究首先製備2.5wt% Pt/Al2O3觸媒進行測試做為比較基準,藉由改變促進劑CeO2的添加比例、Ni金屬觸媒的摻雜與調整貴金屬Pt的含量以觀察觸媒性能。實驗結果以2.5wt%Pt-2.5wt% Ni/5wt%CeO2/Al2O3觸媒進行WGS反應在操作溫度750℃、反應時間24~36小時及進料水碳莫耳比S/C = 5時有最佳的CO轉化率平均為76.5%,且經過36小時測試後並沒有活性下降問題,展現了良好的穩定性。將白金含量降低至0.5wt%
之觸媒於相同條件下測試,其CO轉化率平均為69.9%,亦展現不錯的熱穩定性且成本可大幅減少。

本研究亦嘗試以無電鍍法於多孔不銹鋼基材上製備緻密性的鈀銀合金薄膜並應用於WGS反應。在無電鍍薄膜實驗前將以沸石(zeolite)及合成凝膠(synthesis gel)對基材進行改質以縮減孔徑。實驗利用薄膜反應器通入氫氮混合氣觀察薄膜在不同操作壓力與溫度下對於氫氣之滲透係數,期許未來可將膜反應器整合於高溫水氣轉化反應系統中。

In this study, catalyst for water-gas shift (WGS) reaction operated at ultrahigh temperatures (750~850℃) was prepared and tested. The catalyst was prepared by using the Al2O3 as support and varying the amounts of noble metal (Pt), Transition metal (Ni), and promoter (CeO2). The catalyst performance was characterized by measuring the CO conversion, H2 yield, and the thermal stability for the WGS reaction. Using the performance of 2.5wt%Pt/ Al2O3 catalyst as the comparison basis, it was found that the 2.5wt%Pt-2.5wt%Ni/5wt%CeO2/Al2O3 catalyst has the best performance among all the catalysts prepared in this study. Using this catalyst with reaction temperature of 750℃ and carbon to steam ratio of 5, CO conversion of 76.5% can be reached and thermal stability can be maintained in 36 hours operation.

The membrane reactor for carrying out the WGS reaction was also prepared in this study by coating the Pd-Ag alloy membrane on the porous stainless steel tube. The zeolite and synthesis gel was used to reduce the pore size of the porous support before the electroless plating for the membrane coating. Using H2/N2 mixture for the pre-test, the hydrogen permeation at different pressure and temperature can be observed. It is expected that the prepared membrane reactor could be used in the future WGS experiments.
URI: http://hdl.handle.net/11455/2918
其他識別: U0005-2308201316580600
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.