Please use this identifier to cite or link to this item:
標題: 更年性與非更年性番石榴果實發育期間糖類代謝之研究
Studies on Sugar Metabolism in Climacteric and Non-climacteric Guava Fruits during Development
作者: 潘美汶
Pan, Mei-Wen
關鍵字: molecular maker;益收;ethephon;sucrose synthase;sucrose phosphate synthase;invertase;蔗糖合成酶蔗糖磷酸合成酶轉化酶
出版社: 園藝學系所
引用: 王武彰。1992。番石榴採收時期對果實品質影響之研究。中華農業研究。41:261-270。 王昭月、張有明、沈百奎、王毓華、劉邦基。2005。利用RAPD與ISSR分子標誌鑑定西瓜品種。台灣農業研究。54:257-269。 林慧玲。1998。番石榴果實後熟生理之研究。國立台灣大學園藝學系博士論文。 柯立祥。1997。土壤水分對番石榴果實產量及品質之影響。提升果樹產業競爭力研討會專集Ι。台灣省台中區農業改良場特刊第38號。pp. 231-237。 張哲嘉、林宗賢。1998。台灣番石榴生產現況與改進。台灣園藝。44:116-124。 陳敏祥。1984。台灣番石榴之栽培管理與產期調節。果樹產期調節研討會專集。台灣省台中區農業改良場特刊第1號。 陳袖真。2004。分子標記在番石榴基因型遺傳相似性分析與性狀鑑定上之應用。國立屏東科技大學農園生產係碩士論文。 湯佳裕。2006。利用RAPD及形態性狀評估柿種原遺傳歧異度。國立中興大學園藝學系碩士論文。 黃瑞華。2002。''水晶拔''葉片無機養分周年變化及果實後熟生理之研究。國立中興大學園藝學系碩士論文。 楊宗獻。1996。二十世紀番石榴果實發育之研究。國立中興大學園藝學系碩士論文。 廖春梅。1990。台灣番石榴調查報告。台灣省政府農林廳編印。pp. 1-2。 劉建村、嚴滄涼。番石榴夏果及冬果生產投入與價格分析。農業世界 243:90-91 劉富文。1994。園產品採後處理及貯藏技術。台灣省青果運銷合作社。 謝鴻業。1998。臺灣番石榴品種的演進與發展。農業世界 174:23-25。 謝鴻業。2000。珍珠拔與水晶拔之特性與栽培管理。高雄區農業專訊 31。 謝鴻業。2005。番石榴。農家要覽。財團法人豐年社。台北。pp.52-58。 顏秀芬。1986。番石榴果實呼吸型式及控制大氣組成貯藏延長其櫃架壽命之研究。國立台灣大學園藝學研究所碩士論文。 Abdi, N., P. Holford, W. B. McGlasson and Y. Mizrahi. 1997. Ripening behaviour and responses to propylene in four cultivars of Japanese type plums. Postharvest Biol. Technol. 12:21-34. Abdi, N., W. B. McGlasson, P. Holford, M. Williams and Y. Mizrahi. 1998. Responses of climacteric and suppressed-climacteric plums to treatment with propylene and 1-methylcyclopropene. Postharvest Biol. Technol. 14:29-39. Abeles F. B., P. W. Morgan, M. E. J. Saltveit. 1992. Ethylene in plant biology. Academic Press, San Diego. Akamine E. K. and T. Goo. 1979. Respiration and ethylene production in fruits of species and cultivars of Psidium and species of Eugenia. J. Amer. Soc. Hort. Sci. 104:632-635 Akiva, A. and S. F. Yang. 1981. Biosynthesis of stress ethylene induced by water deficit. Plant Physiol. 68:594-596. Barry, C. S., M. I. Llop-Tous and D. Grierson. 2000. The regulation of 1-Aminocyclopropane-1-Carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123: 979-9864. Begheldo M, G. A. Manganaris, C. Bonghi and P. Tonutti. 2008. Different post-harvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathway in stony hard peaches. Postharvest Biol. Technol. 48:84-91. Biale J. B. 1964. Growth, maturation and senescence in fruits. Science. 146:880-888. Biale J. B. and D. E. Barcus. 1970. Respiratory patterns in tropical fruits of the Amazon basin. Trop. Sci. 12:93-104. Biale, J. B. and Young , R. E. 1981. Respiration and ripening in fruits-retrospect and prospect. Recent advances in the biochemistry of fruits and vegetables. Academic Press, London. Bianco, R. L. and M. Rieger. 2002. Partitioning of sorbitol and sucrose catabolism within peach fruit. J. Amer. Soc. Hort. Sci. 127(1):115-121. Botstein, D., R. L. White, M. Skolinick and R. W. Davis. 1980. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Amer. J. Hum. Genet. 32:314-331. Brown, B. I. and R. B. H. Wills. 1983. Postharvest changes in guava fruit of different maturity. Sci. Hort. 19:237-243. Brown, M. M., J. L. Hall, and L. C. Ho. 1997. Sugar update by protoplasts isolated from tomato fruit tissues during various stages of fruit growth. Physiologia Plantarum. 101: 533-539. Brummell, D. A. 2000. Regulation and genetic manipulation of ripening in climacteric fruit. Stew. Postharvest Rev. 1:1-15. Burg, S. P. 1962. The physiology of ethylene formation. Annu. Rev. Plant Physiol. 13:625-302. Cawthon, D. L. and J. R. Morris. 1982. Relationship of seed number and maturity to berry development, fruit maturation, hormonal changes and uneven ripening of ‘Concord’ (Vitis labrusca L.) grapes. J. Amer. Sci. Hort. 107:1097-1104. Chang, C. 2003. Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci. 8:365-368. Chaves, S. and P. Mello-Farias. 2006. Ethylene and fruit ripening: From illumination gas to the control of gene expression, more than a century of discoveries. Genet. Mol. Biol. 29:508-515. Chen, C. C. and R. E. Paull. 2000. Sugar metabolism and pineapple flesh translucency. J. Amer. Soc. Hort. Sci. 125:558–562. Chyan, C. C., Chen, S. Y. and Wu, C. M. 1992. Differneces of volatile and non volatile constituents between mature and ripe guava (Psidium guava L). J. Agric. food chem. 40:846-849. Clendennen, S. K. and C. D. May. 1997. Differential gene expression in ripening banana fruit. Plant Physiol. 115:463-469. Collard, B. C. Y. and D. J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc. B. 363: 557-572. Degani, C., J. Deng, A. Beiles, R. Ei-Batsri, M. Goren and S. Gazit. 2003. Identifying lychee (Litch chinensis Sonn.) cultivars and their genetic relationships using intersimole sequence repeat (ISSR) markers. J. Amer. Soc. Sci. 128:838-845. Díaz, J., A. Have and J. A. L. Kan. 2002. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol. 129:1341-1351. EL Buluk, R. E., E. F. E. Babiker and A. H. EL Tinay. 1997. Changes in chemical composition of guava fruits during development and ripening. Food Chem. 59:395-399. EL Buluk, R. E., F. E. Babiker and A. H. EL Tinay. 1996. Changes in sugar, ash and minerals in four guava cultivars during ripening. Plant Foods Hum. Nutri. 49:147-154. El-Sharkay, I., B. Jones, B.Gentzbittel, L. Lelievre and J. M. Latché. 2004. Differential regulation of ACC synthase genes in cold-dependent and cold-independent ripening in pear fruit. Plant Cell Environ. 27:1197-1210. Etheridge, N., B. P. Hall and G E. Schaller. 2006. Progress report: ethylene signaling and responses. Planta. 223:387-391. Fillion, L. A., S. Picaud, P. C. The´venot, R. Lemoine, C. Romieu, and S. Delrot. 1999. Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiology 120: 1083–1093. Fridman, E., T. Pleban and D. Zamir. 2000. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97: 4718-4723. Giovannoni, J. J. 2001. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:725-749. Giovannoni, J. J., H. Yen, B. Shelton, S. Miller, J. Vrebalov, P. Kannan, D. Tieman, R. Hackett, D. Grierson and H. Klee. 1999. Genetic mapping of ripening and ethylene-related loci in tomato. Theor Appl Genet 98:1005–1013. Giovannoni1, J. J. 2004. Genetic regulation of fruit development and ripening. Plant Cell 16:170-180. Goldschmidt, E. E. 1997. Ripening of citrus and other non-climacteric fruits: a role for ethylene. Acta Hortic. 463:335-339. Gortner, W. A., G. G. Dull and B. H. Krauss. 1967. Fruit development, maturation, ripening, and senescence: a biochemical basis for horticultural termiology. HortScience 2:141-144. Haji, T., H. Yaegaki and M. Yamaguchi. 2004. Varietal differences in the relationship between maturation characteristics, storage life and ethylene production in peach fruit. J. Jpn. Soc. Hort. Sci. 73:97-104 Haji, T., H. Yaegaki and M. Yamaguchi. 2005. Inheritance and expression of fruit texture melting, non-melting and stony hard in peach. Sci. Hortic. 105:241-248. Hashizume, H., K. Tanase, K. Shiratake, H. Mori and S. Yamaki. 2003. Purification and characterization of two soluble acid invertase isozymes from Japanese pear fruit. Phytochemistry. 63:125-129. Hayama, H., M. Tatsuki, A. Ito and Y. Kashimura. 2006. Ethylene and fruit softening in the stony hard mutation in peach. Posthar. Biol. Technol. 41:16-21. Herbers, K. and U. Sonnewald. 1998. Molecular determinants of sink strength. Curr. Opin. Plant Biol. 1:207-216 Hisawa, K., Y. Kinugasa, S. Amano, A. Hashimoto, R. Nakano, A. Inaba and Y. Kubo. 2003. Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J. Exp. Bot. 54:771-779. Ho, L. C. 1979. Regulation of assimilate translocation between leaves and fruits in the tomato. Ann. Bot. 43, 437-448. Hubbard, N. L., D. M. Pharr and S. C. Huber. 1990. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. Plant Physiol. 94:201-208. Hubbard, N. L., S. C. Huber and D. M. Pharr. 1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumismelo L.). Plant Physiol. 91:1527-1534. Huber, D. J. 1983. The role of cell-wall hydrolysis in fruit softening. Horticultural Rev. 5:169-219. Itai, A. and T. Tanahashi. 2008. Inhibition of sucrose loss during cold storage in Japanese pear (Pyrus pyrifolia Nakai) by 1-MCP. Postharvest Biol. Technol. 48:355-363. Jain, N., K. Dhawan, S. Malhora and R. Singh. 2003. Biochemistry of fruit ripening of guava (Psidium guajava L.): compositional and enzymatic changes. Plant Foods Hum. Natri. 58:309-315. Jain, N., K. Dhawan, S. P. Malhora, S. Siddiqui and R. Singh. 2001. Compositional and enzymatic changes in guava (Psidium guajava L.) fruits during ripening. Acta Physiol. Plant. 23:357-362. Klann, E. M., R. T. Chetelat and A. B. Bennett. 1993. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol. 103:863-870. Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7: 235-246. Lagercrantz, U. H. Ellegren and L. Andersson. 1993. The abundance of various polymorphic microsatellite motif differs between plants and vertebrates. Nucl. Acids Res. 21:1111-11115. Lelievre, J. M., A. Latche, B. Jones, M. Bouzayen and J. C. Pech. 1997. Ethylene and fruit ripening. Physiol. Plant. 101:727-739. Lemaire-Chamley, M., J. Petit, V. Garcia, D. Just, P. Baldet, V. Germain, M. Fagard, M. Mouassite, C. Cheniclet and C. Rothan. 2005. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 193:750-769. Lieberman, M., A. Kunishi, L. W. Mapson and D. A. Wardale. 1966. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 41:376-382. Mattiuz, B. H., L. G. Neto and P. L. Filho. 1997. Fruit development of three guava cultivars (Psidium guajava L.). Acta Hort. 452:83-86. McCollum, T.G., D. J. Huber and D. J. Cantliffe. 1988. Soluble sugar accumulation and activity of related enzymes during muskmelon fruit development. J. Amer. Soc.Hort. Sci. 113:399-403. McMurchie, E. J., W. B. Mc Glasson and I. L. EAKS. 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235-236. Mercado-Silva, E., P. Benito-Bautista and M. A. García-Velasco. 1998. Fruit development, harvest index and ripening changes of guavas produced in central Mexico. Postharvest Biol. Technol. 13: 143-150. Moore, S., J. Vrebalov, P. Payton and J. Giovannoni. 2002. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J. Exp. Bot. 53:2023-2030. Moriguchi, T., K. Abe, T. Sanada and S. Yamaki. 1992. Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of Asian pear. J. Amer. Soc. Hort. Sci. 117:274-278. Mowlah, G. and S. Itoo. 1982. Guava sugar components and related enzymes stages of fruit development and ripening. J. Jap. Soc. Food Sci. Technol. 29: 472-476. Nei, M. and W. H. Li. 1979. Methematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Soc. USA 76:5269-5273. Novelli, V. M., M. Cristofanl and M. A. Machado. 2000. Evaluation of Microsatellite markers in cultivars of sweet orange (Citrus sinensis L. Osbeck). Acta Hort. 535:47-50. Obando, J., C. Miranda, M. M. Jowkar, E. Moreno, M. K. Sour, J. A. Martínez, P. Arús, J. García-Mas, A. J. Monforte and J. P. Fernández-Trujillo. 2007. Creating climacteric melon fruit from nonoclimacteric parentals: postharvest quality implications. Advances in plant ethylene research: proceedings of the 7th international symposium on the plant hormone ethylene. Springer. Netherlands. pp.197-205. Obiadalla-Ali, H., A. R. Fernie, J. Kossmann and J. R. Lloyd. 2004. Development analysis of carbohydrate metabolism in tomato (Lycopersicon esculentum cv. Micor-Tom) fruits. Physiol. Plant. 120:196-204. Oparka, K. J. and R. Turgeon. 1999. Sieve elements and companion cells-traffic control centers of the phloem. Plant Cell 11:739-750. Oparka, K. J. and R. Turgeon. 1999. Sieve elements and companion cells-traffic control centers of the phloem. Plant cell. 11:739-750. Ortiz, R. 2004. Biotchnology with horticultural and agronomic crops in Africa. Acta Hort. 642:43-56. Paran, I, and R. W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85:985-993. Paull, R. E. and T. Goo. 1983. Relationship of guava (Psidium guajava L.) fruit detachment force to the stage of fruit development and chemical composition. HortScience 18:65-67. Pech, J. C., A. Chaves, Z. Li, J. M. Lelievre, M. Bouzayen, P. Frasse, H. Zegzouti and A. Latche. 2002. Recent development on the role of ethylene in the ripening of climacteric fruit. Acta Hort. 587:489-494. Pech, J. C., M. Bouzayen and A. Latche. 2004. Ethylene biosynthesis. In PJ Davis, ed, Plant Hormones. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 115-136. Pech, J. C., M. Bouzayen and A. Latche. 2008. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175:114-120. Périn C., M. C. Gomez-Jimenez, L. Hagen, C. Dogimont, J.C. Pech, A. Latché, M. Pitrat and J.M. Lelièvre. 2002. Molecular and genetic characterisation of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit, Plant Physiol. 129:209-300. Rodríguez, N., J. Valdés-Infante, D. Becker, B. Velázquez, G. González, D. Sourd, J. Rodríguez, N. Billotte, A. M. Risterucci, E. Ritter and W. Rohde. 2007. Characterization of guava accessions by SSR markers, extension of the molecular linkage map, and mapping of QTLs for vegetative and reproductive characters. Acta Hort. 735:201-214. Rodríguez, R., Agarwal, P. C. and N. K. Saha. 1971. Physicochemical changes during development of Sefeda guava fruit. Ind. Food Packer. 25:5-20. Roitsch T. and M. González. 2004. Function and regulation of plant invertases: sweet sensations. Trends plant sci.. 9:606-613. Salazart, D. M., P. Melgarejo, R. Martínez, J. J, Martínez, F. Hernández and M. Burguera. 2006. Phenological stage of the guava tree (Psidium guajava L.). Sci. Hort. 108:157-161. Salunkhe, D. K. and B. B. Desai. 1984. Postharvest biotechnology of fruits. Vol. II CRC Press, Inc. United States. Schaffer, A. A. and M. Petreikov. 1997. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol. 113:739-746. Schmitz, K. and U. Holthaus. 1986. Are sucrosyl-oligosaccharides synthesized in mesophyll protoplasts of mature leaves of Cucumis melo? Planta. 169:529-535. Scorza, R. and W. B. Sherman. 1996. Peaches. Fruit Breeding. Wiley. New York. pp.325-440. Sharma, A. S., S. K. Sehrawat, R. S. Singhrot and K. S. Boora. 2007. Assessment of guava diversity and relationship among Psidium spp. Through RADP analysis. Acta Hort. 735:71-78. Sheikholeslam, S. N. and H. B. Currier. 1977. Phloem pressure differences and 14C-assimilate translocation in ecballium elaterium. Plant Physiol. 59(3):376-380. Stommel, J. R. 1992. Enzymic components of sucrose accumulation in the wild tomato species Lycopersicon peruvianum. Plant Physiol. 99:324-328 Sturm, A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol. 121:1-8. Sturm, A. and G. Q. Tang. 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4:401-407. Tatsuki, M., T. Haji and M. Yamaguchi. 2006. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp1ACS1, in peach fruit softening. J. Exp. Bot. 57:1281-1289. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acid Res. 17:4673-4671. Teo, G., Y. Suzuki, S. L. Uratsu, B. Lampinen, N. Ormonde, W. K. Hu, T. M. DeJong and A. M. Dandekar. 2006. Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc. Natl. Acad. Sci. USA 103:18842-18847. Tesniere, C. and C. Verries. 2001. Alcohol dehydrogenase: a molecular marker in grapevine: Molecular biology and biotechnology of the grapevine. Kluwer Acad. Publ. ordrecht. Tesniere, C., M. Pradal, A. El-Kereamy, L. Torregrosa, P. Chatelet, J. Roustan and C. Chervin. 2004. Involvement of ethylene signalling in a non-climacteric fruit: new elements regarding the regulation of ADH expression in grapevine. J. Exp. Bot. 55:2235–2240. Tian, M. S., S. Prakash, H. J. Elgar, H. Young, D. M. Burmeister and G. S. Ross. 2000. Responses of strawberry fruit to 1-Methylcyclopropene (1-MCP) and ethylene. Plant Growth Reg. 32:83-90. Tiburcio A. F., J. L. Campos, X. Figuoras and R. T. Besford. 1993. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Reg. 12:331-340. Trainotti, L., A. Pavanello and G. Casador. 2005. Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J. Exp. Bot. 56:2037-2046. Tucker, G. A. 1993. Introduction. pp.1-52. In: G. B. Seymour, J. E. Taylor and G. A. Tucker. (eds). Biochemistry and fruit ripening. Chamam and Hall, London. Tymowska-Lalanne, Z. and M. Kreis. 1998a. The plant invertases: physiology, biochemistry and molecular biology. Adv. Bot. Res. 28:71-117. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acid Res. 23:4407-4414. Wilkinson J, M. Lanahan, H. Yen, J. Giovannoni and H. Klee. 1995. An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270:1807-1809. Williams, J. G., A. G. Kubelik, K. J. Livak, J. A. Fafalski and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18:6531-6535. Wilson, C. W., P. E. Shaw and C. W. Campbell. 1982. Determination of organic acids and sugars in guava (Psidium guajava L.) cultivars by high-performance liquid chromatography. J. Sci. Food Agric. 33:777-780. Winter, H and S. C. Huber. 2000. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit. Rev. Plant Sci. 19:31–67. Xiao, J., J. Li, S. Grandillo, S. N. Ahn, L. Yuan, S. D. Tanksley and S. R. McCouch. 1998. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics. 150: 899-909. Suppl. Yakubov, B., O. Barazani and A. Golan-Goldhirsh. 2005. Combination of SCAR primers and Touchdown-PCR for sex identification in Pistacia vera L. Sci. Hort. 103:473-478. Yamaki, S. 1995. Physiology and metabolism of fruit development-biochemistry of sugar metabolism and compartmentation in fruit. Acta Hort. 498:109-120. Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35:155-189. Yu, Y. B., D. O. Adams and S. F. Yang. 1979. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch. Biochem. Biophys. 198(1):280-286. Yusof, S. and S. Mohamed. 1987. Physico-chemical changes in guava (Psidium guajava L.) during development and maturation. J. Sci. Food Agric. 38:31-39. Zhang, X. Y., X. L. Wang, X. F. Wang, G. H. Xia, Q. H. Pan, R. C. Fan, F. Q. Wu, X. C. Yu and D. P. Zhang. 2006. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 142:220-232. Zhou, L. and R. E. Paull. 2001. Sucrose metabolism during papaya (Carica papaya) fruit growth and ripening. J. Amer. Soc. Hort. Sci. 126:351-357. Zietkiewicz, E., A. Rafalski and D. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchhored polymerase chain reaction amplication. Genome 20:176-183. Zuzunaga, M., M. Serrano, D. Martinez-Romero, D. Valero and Riquelme. 2001. Comparative study of two plum (Prunus salicina Lindl.) cultivars during growth and ripening. Food Sci. Tech. 7:123-130.
本研究之目的為比較更年性與非更年性番石榴果實發育期間果實性狀與糖類代謝之差異。調查結果顯示所有分析的番石榴品種果實生長過程中累積的糖類均以蔗糖和果糖的累積量較高,而葡萄糖累積量較低。糖類代謝相關酵素活性於果實發育後期蔗糖含量增加時,蔗糖合成酶(sucrose synthase)及蔗糖磷酸合成酶(sucrose phosphate synthase)活性也上升。果糖及葡萄糖的累積量在果實發育後期增加較快速,而中性轉化酶(neutral invertase)的活性也有增加的趨勢,但酸性轉化酶(acid invertase)的活性則沒有顯著的差異。因此,蔗糖合成酶與蔗糖磷酸合成酶應該是番石榴果實發育後期蔗糖累積之關鍵酵素,而中性轉化酶則可能與單糖的累積有關。
以RAPD (Random Amplified Polymorphism DNA)分子標誌分析番石榴更年性品種''黃拔''、''巴基斯坦''及''梨拔''與非更年性品種''珍珠拔''、''水晶拔''及''世紀拔'',其相似度樹狀圖顯示非更年性品種可分在同一群內,其中''珍珠拔''和''水晶拔''的相似度最高達0.90。另外,以OPN-15、OPR-11、OPW-7和OPU-1等4支引子均於更年性品種出現一條明顯的特異條帶,這些條帶將可用於分析上述品種之雜交後代。

The objective of this study was to compare differences in fruit characteristics and sugar metabolism during development between climacteric and non-climacteric guavas. Results indicated that all the guava cultivars analyzed had higher sucrose and fructose contents than glucose. Determination of activities of sugar metabolism related enzymes during fruit growth and development showed that with the raising of sucrose content, sucrose synthase and sucrose phosphate synthase activities also increased. The cumulative amount of fructose and glucose increased more rapidly during the late stage of fruit maturation and the neutral invertase activity also increased. However, the acid invertase activity showed non-significant difference. As a result, the sucrose synthase and sucrose phosphate synthase should be the key enzymes for sucrose accumulation in guava fruits during development, while neutral invertase may be related to the accumulation of hexoses.
With the treatment of ethephon, it resulted in the decrease in titratable acid and firmness of guava fruits and also turned the skin of fruit from dark green to yellow-green or white-green. However, fruit weights and total soluble solids were not affected by the ethephon treatment. The ethephon treatment on climacteric guava fruits, ''Huang Bar'' and ''Pakistani'', caused an increase in sucrose content, while on non-climacteric guava fruits, ''Jen-Ju Bar'' and ''Shy-Jii Bar'', the sucrose content had no significant difference. In addition, the hexose contents in non-climacteric guava fruits were increased by the ethephon treatment, which indicated that sugar metabolism mechanism may be different between climacteric and non-climacteric guava fruits during ripening stage.
After analyzing the climacteric guava cultivars, ''Huang Bar'', ''Pakistani'', ''Li Bar'', and non-climacteric cultivars, ''Jen-Ju Bar'', ''Shui-Jing Bar'', ''Shy-Jii Bar'', by RAPD (Random Amplified Polymorphism DNA), the dendrogram showed that non-climacteric cultivars was in the same cluster and ''Jen-Ju Bar'' and ''Shy-Jii Bar'' had the highest similarity of 0.90. In addition, OPN-15, OPR-11, OPW-7 and OPU-1 all generated a polymorphic band in climacteric cultivars, which was not found in non-climacteric cultivars. Those bands could be used to analyze the hybrid progenies from crosses between the alove cultivars.
其他識別: U0005-2308201015435300
Appears in Collections:園藝學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.