Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2923
標題: 鋅系列奈米光電薄膜機械性質研究
Zinc series nanometer electro-optic thin film mechanical property research
作者: 姚威宏
Yau, Wei-Hung
關鍵字: 氧化鋅;ZnO;奈米壓痕;奈米刮痕;機械性質;Nanoindentation;Nanoscratch;Mechanical Property
出版社: 機械工程學系所
引用: [1] S. A. Studenikin, N. Golego, M. Cocivera,"Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis", Journal of Applied Physics, 84 (1998) 2287-2294. [2] X. D. Li, L. M. Zhang, H. S. Gao,"Micro/nanomechanical characterization of a single decagonal AlCoNi quasicrystal", J Phys D Appl Phys, 37 (2004) 753-757. [3] S. J. Bull,"Nanoindentation of coatings", Journal of Physics D: Applied Physics, 38 (2005) R393-R413. [4] C. H. Chien, S. R. Jian, C. T. Wang, J. Y. Juang, J. C. Huang, Y. S. Lai,"Cross-sectional transmission electron microscopy observations on the Berkovich indentation-induced deformation microstructures in GaN thin films", J Phys D Appl Phys, 40 (2007) 3985-3990. [5] V. A. Coleman, J. E. Bradby, C. Jagadish, P. Munroe, Y. W. Heo, S. J. Pearton, D. P. Norton, M. Inoue, M. Yano,"Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire", Applied Physics Letters, 86 (2005) 203105. [6] S. Zhao, Y. Zhou, Y. Liu, K. Zhao, S. Wang, W. Xiang, Z. Liu, P. Han, Z. Zhang, Z. Chen, H. Lu, K. Jin, B, G. Yang,"Enhanced hardness in B-doped ZnO thin films on fused quartz substrates by pulsed-laser deposition", Applied Surface Science, 253 (2006) 726-729. [7] R. Navamathavan, K. K. Kim, D. K. Hwang, S. J. Park, T. G. Lee, G. S. Kim, J. H. Hahn,"Deformation behavior during nanoindentation of epitaxial ZnO thin films on sapphire substrate", Materials Letters, 61 (2007) 2443-2445. [8] S. R. Jian, I. J. Teng, P. F. Yang, Y. S. Lai, J. M. Lu, J. G. Chang, S. P. Ju,"Surface morphological and nanomechanical properties of PLD-derived ZnO thin films", Nanoscale Research Letters, 3 (2008) 186-193. [9] J. J. Chen, Y. Gao, F. Zeng, D. M. Li, F. Pan,"Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films", Applied Surface Science, 223 (2004) 318-329. [10] L. Y. Lin, M. C. Jeong, D. E. Kim, J. M. Myoung,"Micro/nanomechanical properties of aluminum-doped zinc oxide films prepared by radio frequency magnetron sputtering", Surf Coat Tech, 201 (2006) 2547-2552. [11] H. Schulz, K. H. Thiemann,"Structure parameters and polarity of the wurtzite type compounds Sic—2H and ZnO", Solid State Communications, 32 (1979) 783-785. [12] B. Mokili, Y. Charreire, R. Cortes, D. Lincot,"Extended X-ray absorption fine structure studies of zinc hydroxo-sulphide thin films chemically deposited from aqueous solution", Thin Solid Films, 288 (1996) 21-28. [13] T. Abe, H. Ishikura, N. Fukuda, Z. M. Aung, A. Masahiro, H. Kasada, K. Ando,"Demonstration of blue-ultraviolet avalanche photo-diodes of II–VI wide bandgap compounds grown by MBE", Journal of Crystal Growth, 214-215 (2000) 1134-1137. [14] A. Gerhard, J. Nurnberger, K. Schull, V. Hock, C. Schumacher, M. Ehinger, W. Faschinger,"ZnSe-based MBE-grown photodiodes", Journal of Crystal Growth, 184-185 (1998) 1319-1323. [15] H. Ishikura, N. Fukuda, M. Itoi, K. Yasumoto, T. Abe, H. Kasada, K. Ando,"High quantum efficiency blue–ultraviolet ZnSe pin photodiode grown by MBE", Journal of Crystal Growth, 214-215 (2000) 1130-1133. [16] K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, O. Oda,"ZnTe pure green light-emitting diodes fabricated by thermal diffusion", Journal of Crystal Growth, 214 (2000) 1080-1084. [17] L. S. Lai, I. K. Sou, C. W. Y. Law, K. S. Wong, Z. Yang, G. K. L. Wong,"ZnSSe-based ultra-violet photodiodes with extremely high detectivity", Optical Materials, 23 (2003) 21-26. [18] V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, V. Nagarkar,"Luminescence Properties and Morphology of ZnSe:Te Films", IEEE Transactions on Nuclear Science, 55 (2008) 1556-1560. [19] S. E. Grillo, M. Ducarroir, M. Nadal, E. Tourni , J. P. Faurie,"Nanoindentation of Si, GaP, GaAs and ZnSe single crystals", Journal of Physics D: Applied Physics, 36 (2003) L5-L9. [20] I. Zarudi, J. Zou, L. C. Zhang,"Microstructures of phases in indented silicon: A high resolution characterization", Applied Physics Letters, 82 (2003) 874. [21] C. R. Taylor, E. A. Stach, G. Salamo, A. P. Malshe,"Nanoscale dislocation patterning by ultralow load indentation", Applied Physics Letters, 87 (2005) 073108. [22] B. Haberl, J. E. Bradby, S. Ruffell, J. S. Williams, P. Munroe,"Phase transformations induced by spherical indentation in ion-implanted amorphous silicon", Journal of Applied Physics, 100 (2006) 013520. [23] S. Basu, M. W. Barsoum, A. D. Williams, T. D. Moustakas,"Spherical nanoindentation and deformation mechanisms in freestanding GaN films", Journal of Applied Physics, 101 (2007) 083522. [24] H. Wen, X. Wang, L. Li,"Mechanical properties of sol-gel derived BiScO3 – PbTiO3 thin films by nanoindentation", Journal of Applied Physics, 100 (2006) 084315. [25] P. Fernandez, J. Piqueras, A. Urbieta, Y. T. Rebane, Y. Shreter,"Deformation-induced defect levels in ZnSe crystals", Semiconductor Science and Technology, 14 (1999) 430-434. [26] S. E. Grillo, M. Ducarroir, M. Nadal, E. Tourni , J. P. Faurie,"Nanoindentation study of Zn1 xBexSe heteroepitaxial layers", Journal of Physics D: Applied Physics, 35 (2002) 3015-3020. [27] R. Triboulet, J. O. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, G. Neu,"Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection", Journal of Crystal Growth, 159 (1996) 156-160. [28] Y. Ki Hyun, J.-W. Choi, D.-H. Lee,"Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f. magnetron sputtering", Thin Solid Films, 302 (1997) 116-121. [29] R. P. Davies, C. R. Abernathy, S. J. Pearton, D. P. Norton, M. P. Ivill, F. Ren,"Review of recent advances in transition and lanthanide metal-doped GaN and ZnO", Chemical Engineering Communications, 196 (2009) 1030-1053. [30] A. Che Mofor, A. El-Shaer, A. Bakin, H. H. Wehmann, H. Ahlers, U. Siegner, S. Sievers, M. Albrecht, W. Schoch, N. Izyumskaya, V. Avrutin, J. Stoemenos, A. Waag,"Magnetic property investigations on ZnMnO", Superlattices and Microstructures, 39 (2006) 381-386. [31] V. Avrutin, N. Izyumskaya, U. Ozgur, A. El-Shaer, H. Lee, W. Schoch, F. Reuss, V. G. Beshenkov, A. N. Pustovit, A. C. Mofor, A. Bakin, H. Morkoc, A. Waag,"Optical and electrical properties of ZnMnO layers grown by peroxide MBE", Superlattices and Microstructures, 39 (2006) 291-298. [32] H. J. Lin, D. Y. Lin, J. Z. Hong, C. S. Yang, C. M. Lin, C. F. Lin,"A study of the grain size and electric properties of Mn-doped ZnO thin films grown by plasma-assisted molecular beam epitaxy", Phys Status Solidi C, 6 (2009) 1468-1471. [33] S. W. Jung, S. J. An, G.-C. Yi, C. U. Jung, S.-I. Lee, S. Cho,"Ferromagnetic properties of Zn[sub 1−x]Mn[sub x]O epitaxial thin films", Applied Physics Letters, 80 (2002) 4561. [34] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morkoc,"A comprehensive review of ZnO materials and devices", Journal of Applied Physics, 98 (2005) 041301. [35] M. Godlewski, J. P. Bergman, B. Monemar, E. Kurtz, D. Hommel,"Influence of strain conditions on exciton dynamics and on thermal stability of photoluminescence of ZnCdSe/ZnSe quantum wells", Applied Physics Letters, 69 (1996) 2843. [36] W. Meredith, G. Horsburgh, G. D. Brownlie, K. A. Prior, B. C. Cavenett, W. Rothwell, A. J. Dann,"Microprobe Raman study of the variation of LO phonon frequency with the Cd concentration in the ternary compound Zn1 − xCdxSe", Journal of Crystal Growth, 159 (1996) 103-107. [37] M. A. Haase, J. Qiu, J. M. DePuydt, H. Cheng,"Blue-green laser diodes", Applied Physics Letters, 59 (1991) 1272. [38] T. D. Raju, K. Nakasa, M. Kato,"Relation between delamination of thin flims and backward deviation of load–displacement curves under repeating nanoindentation", Acta Materialia, 51 (2003) 457-467. [39] G. M. Pharr, A. Bolshakov,"Understanding nanoindentation unloading curves", Journal of Materials Research, 17 (2011) 2660-2671. [40] W. C. Oliver, G. M. Pharr,"Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology", Journal of Materials Research, 19 (2011) 3-20. [41] D. Sreekantha Reddy, B. Kang, S. C. Yu, Y. Dwarakanadha Reddy, S. K. Sharma, K. R. Gunasekhar, K. N. Rao, P. Sreedhara Reddy,"Electrical and mechanical properties of diluted magnetic semiconductor Zn1−xMnxS nanocrystalline films", Current Applied Physics, 9 (2009) 431-434. [42] S. Y. Chang, T. K. Chang, Y. S. Lee,"Nanoindentating mechanical responses and interfacial adhesion strength of electrochemically deposited copper film", Journal of The Electrochemical Society, 152 (2005) C657-C663. [43] P. A. Steinmann,"A review of the mechanical tests for assessment of thin-film adhesion", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7 (1989) 2267. [44] H. o. m. n. B. Bhushan, 2nd ed., CRC Press, Boca Raton (FL),"(1999). [45] J. C. Barry, L. A. Bursill, J. L. Hutchison,"Measurement of lattice displacement of {100} platelets in diamond", Philosophical Magazine A, 48 (1983) 109-121. [46] W. C. Oliver, G. M. Pharr,"An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Journal of Materials Research, 7 (2011) 1564-1583. [47] G. M. Pharr,"Measurement of mechanical properties by ultra-low load indentation", Materials Science and Engineering: A, 253 (1998) 151-159. [48] X. Li, D. Diao, B. Bhushan,"Fracture mechanisms of thin amorphous carbon films in nanoindentation", Acta Materialia, 45 (1997) 4453-4461. [49] X. Li, B. Bhushan,"Measurement of fracture toughness of ultra-thin amorphous carbon films", Thin Solid Films, 315 (1998) 214-221. [50] Y. Wei, X. Wang, M. Zhao,"Size effect measurement and characterization in nanoindentation test", Journal of Materials Research, 19 (2011) 208-217. [51] R. Saha, W. D. Nix,"Effects of the substrate on the determination of thin film mechanical properties by nanoindentation", Acta Materialia, 50 (2002) 23-38. [52] X. Li, B. Bhushan, "A review of nanoindentation continuous stiffness measurement technique and its applications", Materials Characterization, 48 (2002) 11-36. [53] G. M. P. J. L. Hay, ASM Handbook: Material Testing and Evaluation, 10th ed., International Materials Park, Ohio, USA, 8 (2002) 232. [54] Y. R. Jeng, H. C. Wen, P. C. Tsai,"The effect of Ni catalytic nanoparticle on the growth of carbon nanotubes: A perspective from nanotribological characterization", Diamond and Related Materials, 18 (2009) 528-532. [55] P. F. Yang, H. C. Wen, S. R. Jian, Y. S. Lai, S. Wu, R. S. Chen,"Characteristics of ZnO thin films prepared by radio frequency magnetron sputtering", Microelectronics Reliability, 48 (2008) 389-394. [56] W. T. Lim, C. H. Lee,"Highly oriented ZnO thin films deposited on Ru/Si substrates", Thin Solid Films, 353 (1999) 12-15. [57] Y. I. Golovin,"Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review",Physics of the Solid State, 50 (2008) 2205-2236. [58] B. R. Lawn, A. G. Evans, and D. B. Marshall,"Elastic/Plastic Indentation Damage in Ceramics: The MediadRadial Crack System", J. Am. Ceram. Soc., 63 (1980) 574-581. [59] G.R. Anstis, P. Chantikul, D.B. Marshall and B.R. Lawn,"A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I. Direct Crack Measurements", J. Am. Ceram. Soc. 64 (1981) 533-538. [60] M. T. Laugier,"Palmqvist indentation toughness in WC-Co composites", J. Mater. Sci. Lett. 6, 897 (1987). [61] R. Dukino and M.V. Swain,"Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters", J. Am. Ceram. Soc. 75 (1992) 3299-3304. [62] H. S. Nalwa,"Handbook of Nanostructured Materials and Nanotechnology", Academic, San Diego, CA, United States, Vols. 1-5 (1999). [63 Sebastien Lafaye, Michel Troyon,"On the friction behaviour in nanoscratch testing", 261 (2006) 905-913. [64] F.P. Bowden, D. Tabor,"The Friction and Lubrification of Solids," vol. 1, Clarendon Press, Oxford, 1950-1954. [65] D. Moore,"The Friction and Lubrication of Elastomers", Pergamon Press, London, 1972. [66] Please refer to wikipedia Web site (http://en.wikipedia.org/wiki/Physical_vapor_deposition). [67] Please refer to wikipedia Web site (http://en.wikipedia.org/wiki/Molecular_beam_epitaxy). [68] Please refer to wikipedia Web site (http://en.wikipedia.org/wiki/Scanning_electron_microscope). [69] Please refer to asmicro Web site (http://www.asmicro.com/D5000flyer-p.htm). [70] Please refer to nanoscience Web site (http://www.nanoscience.com/education/afm.html). [71] Spence, John C. H. Experimental high-resolution electron microscopy. New York Oxford U. Press (1988). [72] H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Takayanagi, "STEM imaging of 47 pm separated atomic columns by a spherical aberration corrected electron microscope with a 300 keV cold field emission gun", J. Electron. Micro, 108 (2009) 357–361. [73] K. Takayanagi, Y. Oshima, T. Tanaka, Y. tanihshiro, H. Sawada, F. Hosokawa, T. Tomita, T. Kaneyama, Y. Kondo, "Lithium Atom Microscopy at Sub-50pm Resolution By R005", JEOL News, 45 (1) (2010) 2–7. [74] Please refer to wikipedia Web site (http://en.wikipedia.org/wiki/High-resolution_transmission_electron_microscopy). [75] Please refer to wikipedia Web site (http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy). [76] Please refer to classoneequipment Web site (http://www.classoneequipment.com/content/mts-nano-indenter-sa2-0). [77] Please refer to coherent Web site (http://www.coherent.com.au/?page=products&prodcat=N04CX3MJ6y1H&prodsubcat=Xrcqs29ewm3i.). [78] Please refer to horiba Web site (http://www.horiba.com/scientific/products/cathodoluminescence/). [79] S. S. Lin, J. L. Huang, D. F. Lii,"The effects of r.f. power and substrate temperature on the properties of ZnO films", Surf Coat Tech, 176 (2004) 173-181. [80] J. W. Shin, J. Y. Lee, T. W. Kim, Y. S. No, W. J. Cho, W. K. Choi,"Growth mechanisms of thin-film columnar structures in zinc oxide on p-type silicon substrates", Applied Physics Letters, 88 (2006) 091911. [81] J. M. Yuk, J. Y. Lee, J. H. Jung, T. W. Kim, D. I. Son, W. K. Choi,"Initial formation mechanisms of the supersaturation region and the columnar structure in ZnO thin films grown on n-Si (001) substrates", Applied Physics Letters, 90 (2007) 031907. [82] K. B. Sundaram, A. Khan,"Characterization and optimization of zinc oxide films by r.f. magnetron sputtering", Thin Solid Films, 295 (1997) 87-91. [83] Y. M. Lu, W. S. Hwang, W. Y. Liu, J. S. Yang,"Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering", Materials Chemistry and Physics, 72 (2001) 269-272. [84] N. Almqvist,"Fractal analysis of scanning probe microscopy images", Surface Science, 355 (1996) 221-228. [85] S. V. Prasad, S. D. Walck, J. S. Zabinski,"Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition", Thin Solid Films, 360 (2000) 107-117. [86] L. C. Chao, S. J. Lin, W. C. Chang,"Growth, characterization and effect of substrate bias on ZnO prepared by reactive capillaritron ion beam sputtering deposition", Nucl Instrum Meth B, 268 (2010) 1581-1584. [87] L. Shen, Z. Q. Ma, C. Shen, F. Li,"The mechanism of the oxygen-tuned morphology of Al-doped ZnO films prepared by pulsed-laser ablation", Nucl Instrum Meth B, 268 (2010) 2679-2682. [88] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya,"XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films", Thin Solid Films, 280 (1996) 20-25. [89] S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, Y. Aoyagi,"Highly erbium-doped zinc–oxide thin film prepared by laser ablation and its 1.54 μm emission dynamics", Journal of Applied Physics, 88 (2000) 7129. [90] M. Futsuhara, K. Yoshioka, O. Takai,"Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering", Thin Solid Films, 322 (1998) 274-281. [91] Z. B. Gu, M. H. Lu, J. Wang, D. Wu, S. T. Zhang, X. K. Meng, Y. Y. Zhu, S. N. Zhu, Y. F. Chen, X. C. Pan,"Structure, optical, and magnetic properties of sputtered manganese and nitrogen-codoped ZnO films", Applied Physics Letters, 88 (2006) 082111. [92] S. R. Jian,"Berkovich indentation-induced deformation behaviors of GaN thin films observed using cathodoluminescence and cross-sectional transmission electron microscopy", Applied Surface Science, 254 (2008) 6749-6753. [93] B. Wolf, A. Belger, D. C. Meyer, P. Paufler,"On the Impact of Light on Nanoindentations in ZnSe", physica status solidi (a), 187 (2001) 415-426. [94] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, M. V. Swain,"Nanoindentation of epitaxial GaN films", Applied Physics Letters, 77 (2000) 3373-5. [95] V. A. Coleman, J. E. Bradby, C. Jagadish, M. R. Phillips,"Observation of enhanced defect emission and excitonic quenching from spherically indented ZnO", Applied Physics Letters, 89 (2006) 0821021–23. [96] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. V. Swain,"Mechanical deformation of single-crystal ZnO", Applied Physics Letters, 80 (2002) 956-958. [97] J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, M. R. Phillips,"Contact-induced defect propagation in ZnO", Applied Physics Letters, 80 (2002) 4537-4539. [98] J. E. Bradby, S. O. Kucheyev, J. S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe, G. Li, M. R. Phillips,"Indentation-induced damage in GaN epilayers", Applied Physics Letters, 80 (2002) 383-385. [99] M. V. Nazarov,"Cathodoluminescence defectoscopy of ZnS and ZnSe crystals", Materials Science and Engineering: B, 91-92 (2002) 349-352. [100] J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe,"Mechanical deformation of InP and GaAs by spherical indentation", Applied Physics Letters, 78 (2001) 3235-7. [101] Y. A. Osip''yan, V. F. Petrenko, A. V. Zaretskiĭ, R. W. Whitworth,"Properties of II–VI semiconductors associated with moving dislocations", Advances in Physics, 35 (1986) 115-188. [102] D. F. Bahr, D. E. Kramer, W. W. Gerberich,"Non-linear deformation mechanisms during nanoindentation", Acta Materialia, 46 (1998) 3605-3617. [103] J. I. Jang, M. J. Lance, S. Q. Wen, T. Y. Tsui, G. M. Pharr,"Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior", Acta Materialia, 53 (2005) 1759-1770. [104] S. Ruffell, J. E. Bradby, N. Fujisawa, J. S. Williams,"Identification of nanoindentation-induced phase changes in silicon by in situ electrical characterization", Journal of Applied Physics, 101 (2007) 083531-7. [105] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. V. Swain, G. Li,"Deformation behavior of ion-beam-modified GaN", Applied Physics Letters, 78 (2001) 156-158. [106] B. C. He, C. H. Cheng, H. C. Wen, Y. S. Lai, P. F. Yang, M. H. Lin, "Evaluation of the nanoindentation behaviors of SiGe epitaxial layer on Si substrate", Microelectron Reliab 50 (2010) 63–9. [107] J. M. Sanchez, S. El-Mansy, B. Sun, T. Scherban, N. Fang, D. Pantuso, W. Ford, M. R. Elizalde, J. M. Martı́nez-Esnaola, A. Martı́n-Meizoso, J. Gil-Sevillano, M. Fuentes, J. Maiz,"Cross-sectional nanoindentation: a new technique for thin film interfacial adhesion characterization", Acta Materialia, 47 (1999) 4405-4413. [108] A. Richter, B. Wolf, J. BelBruno,"Investigation of Semiconductors by Nanoindentation", Solid State Phenomena, 95-96 (2004) 519-526. [109] K. Li, B. Y. Ni, J. C. M. Li,"Stick-slip in the scratching of styrene-acrylonitrile copolymer", Journal of Materials Research, 11 (1996) 1574-1580. [110] C. Mate, G. McClelland, R. Erlandsson, S. Chiang,"Atomic-scale friction of a tungsten tip on a graphite surface", Physical Review Letters, 59 (1987) 1942-1945. [111] M. H. Zaldivar, P. Fernandez, J. Piqueras,"Influence of deformation on the luminescence of GaN epitaxial films", Semiconductor Science and Technology, 13 (1998) 900-905. [112] S. E. Grillo, H. Glenat, T. Tite, O. Pages, O. Maksimov, M.C. Tamargo, "Investigation of the nanomechanical properties in relation to the microstructure of Zn1−xBexTe alloys", Appl. Phys. Lett. 93 (2008) 08190. [113] F. P. Bowden, L. Leben, "The Nature of Sliding and the Analysis of Friction", Proc. R. Soc. Lond. A 169 (1939) 371-391. [114] K. Khurana, "Numerical Simulations Reveal Fluid Flows Near Solid Boundaries", Phys. Today 41 (5) (1988) 17.
摘要: 
在寬能隙II-VI族半導體材料中,氧化鋅(ZnO)具有良好光電以及化學特性,使得氧化鋅可廣泛應用並具有相當發展性之半導體材料,欲使氧化鋅成功地導入半導體元件製作過程,需要徹底了解其機械與光學特性。而氧化鋅可藉由伴隨錳(Mn)等摻雜、硒(Se)化合物的合成,達到其調控光能階之特性,進而有效運用於光學元件等場合。本論文透過奈米壓痕、奈米刮痕探討其系列氧化鋅特性的影響,藉由深度感測技術(Depth Sensing Technique),可同時記錄量測過程中壓痕負載與壓痕深度的關係,藉由所得關係圖,來分析系列氧化鋅薄膜之硬度與楊氏模數機械性質。在奈米尺度結構下,系列氧化鋅化合物試片,實驗觀察到其產生之差排將對應楊氏模數與硬度值,進而評估機械可靠度特性,此有助於探討光學元件壽命與使用周期之評估,以下實驗將氧化鋅試片系統性分成幾個主題,討論如下:
(i)本研究使用物理氣相沉積法在藍賽克基材上成長氧化鋅薄膜,其成長功率由100到200瓦特過程,薄膜厚度由0.3增加到1.2微米,X光繞射分析當薄膜厚度增加造成其主要波峰為C軸面(002)主導,電子顯微鏡分析其結構主要為柱狀晶,氧化鋅會隨厚度增加而持續增加密度,此肇因於氧的化學性吸附與成長,實驗建議當高瓦特數的濺鍍過程會造成原子離子化轟擊,而有助於成核與成長,其中鋅與氧鍵結,可藉由高瓦特數的濺鍍過程獲得提升,實驗中使用奈米刮痕系統,對氧化鋅薄膜進行磨擦破壞實驗,探討氧化鋅薄膜所產生的晶格錯位與疊差對物理機械特性的影響,例如表面粗糙度 (11.3, 14.5, 16.5 奈米)與摩擦係數(0.1 ± 0.01, 0.175 ± 0.01, 0.183 ± 0.02)隨瓦特數(100, 150, 200 瓦特)增加而增加,其後,並使用X光電子能譜儀系統量測氧化鋅薄膜表面激發光特性的改變,其中濺鍍功率於100瓦特時:氧(O 1s)從529.4 eV波峰可歸因於氧鋅鍵結提升,而531.0 eV波峰可歸因於氧氫鍵結形成,功率於150瓦特時: 530.5 eV波峰可歸因於氧鋅鍵結整合與提升,從而讓氧鋅鍵結主導整個成長過程濺鍍功率的變化,此結果更進一步確認氧化鋅薄膜結構的鍵結轉換貢獻機制。
(ii) 本研究使用陰極光偵測系統探討單晶硒化鋅在受到奈米壓痕負載後之陰極發光特性,陰極光譜圖中得知單晶硒化鋅具有較偏(1.8–2.4 eV)與接近能帶之波峰(2.68 eV) ,而在陰極光譜圖中,能量降低是由於在奈米壓痕連續四次負載/卸負載過程中對硒化鋅造成晶格缺陷及衍生。這些缺陷與微裂痕藉由穿透式電子顯微鏡與陰極光譜圖轉換分析,最後得知壓痕連續四次負載/卸負載過程,將導致大量缺陷衍生進而造成壓痕曲線滯後的現象,從而了解硬度與楊氏模數對應光學特性的影響。硒化鋅不僅提供機械特性並且可以陰極光偵測之光學來分析,從而以陰極光譜圖證實薄膜受破壞後的非幅射發光中心機制,尤其是電子經由不同種類之缺陷產生的過渡能階,故而此技術可進而提供化學或物理特性判斷。
(iii)利用分子束磊晶系統,研究沉積氧化鋅錳磊晶薄膜其磨耗特性,而氧化鋅錳薄膜的表面形態與結晶方向之特性,可藉由相關檢測儀器得到。當錳原子含量由0到0.16的範圍,磨擦係數介於0.17到0.07,其刮削深度294到200奈米,在刮痕實驗中,可藉由動態原子力顯微鏡系統,以極低施力之探針求得薄膜之磨擦係數與相對應之失效機構特性,例如斷面分佈圖可觀察到,殘留壓應力對應薄膜狀態,可有效抑制初始破裂延伸,而應力能量可於不同氧化鋅錳薄膜扮演主導角色,實驗提供鋅與錳原子在其原子鍵結之物理機制討論,與磨擦係數等變化,例如樹枝滑移效應可由平均施力過程,觀察到其表面分佈由純鋅氧原子條件,可觀察出較高的磨耗反饋效應。
以上經由表面與薄膜內層展現出的界面區域,表面科學如破斷韌性、黏著力強度,可經由奈米級探針的連續位移與側向力負載過程可容易提供,進而分析得到包含接觸抵抗、電子陷阱與能階再結合、熱傳導、薄膜黏著力等相關物理機械特性。

Zinc oxide (ZnO) has emerged as a well candidate because of its large band gap and large excitation binding energy. ZnO thin films are mainly used as transparent conductive films in solar cell windows. The successful fabrication of semiconductor devices incorporating ZnO-system (ZnO, ZnSe, ZnMnO) will require a better understanding of its mechanical characteristics and its optical and electrical properties. The thesis showed that hardness was depth-dependent and decreased with increasing indentation depth, measurements of surface with the ZnO-system material as a substrate underestimated the hardness by means of depth sensing technique. The effects of loading/unloading method were apparent in the load displacement results of ZnO-system. Young’ modulus and hardness values measured using the force modulation technique showed very depth dependence, even the relationship between the nano-scale and relative structures. In order to point out the mechanical reliability (Young’ modulus and hardness) of thin films, relative optical device, and lifetime cycle. We concluded the several parts of issues about ZnO-system as below:
(i) A radio frequency magnetron sputtering system was used to deposit ZnO thin films onto langasite substrates. The thickness of the ZnO film increased from 0.3 to 1.2 μm upon increasing the deposition power from 100 to 200 W. The predominant growth orientation was along the C-axis (002); the intensities of the signals in the X-ray diffraction spectrum increased significantly upon increasing the film thickness. Scanning electron microscopy images revealed columnar structures in the ZnO films and the morphology of ZnO grains is found to be continuous and dense. It is attributed that oxygen chemisorbs on the target and cases a surface layer of adsorbed oxygen. We suggest that the more neutral ion bombardment on the growing film which induces the higher sputtering rate of the growing film. From in situ imaging of scratched tracks, measurement of the coefficient of friction was an effective means of detecting the occurrence of structural defects in the microstructures. For example, the Rms (11.3, 14.5, 16.5 nm) and friction (0.1 ± 0.01, 0.175 ± 0.01, 0.183 ± 0.02) is increased depended on the increased sputtering power (100, 150, 200 watt). The O 1s state splits into two peaks: 529.4 eV can be attributed to the O–Zn bond formation, while the peak at 531.0 eV can be owing to the O–H bond formation. As the deposition power is increased at 150W. The O 1s peak shifted to lower binding energy and a main peak emerged at ca. 530.5 eV, which we attribute to Zn–O bond. Therefore, it appears that Zn–O bonds became dominant during the grain growth process when deposition power increased from 100 to 200W. We also found that the chemical compositions of ZnO films prepared under various deposition powers could be investigated using X-ray photoelectron spectroscopy.
(ii) We used cathodoluminescence (CL) spectroscopy to examine the CL emissions of zinc selenide (ZnSe) single crystals that had been subjected to Berkovich nanoindentation. The CL spectra of the ZnSe exhibited both impurity emission peaks (1.8–2.4 eV band) and near-bandgap emission peaks (2.68 eV). Although CL emissions were generated during four unloading/reloading cycles, the decreased intensity of the impurity emission can be explained in terms of extended dislocation nucleation and propagation during nanoindentation. The resultant dislocation and microcracks were visualized using CL mapping and transmission electron microscopy. We suspect that the formation of a hysteresis loop during the four unloading/reloading cycles was due, in part, to massive dislocation activities induced by the indenter. ZnSe not only have been evidenced in their mechanical properties, but also led to the reported on optical investigation of CL. The deformations act as non-radiative recombination centers that confirmed by CL emission and CL mapping images. CL may prove to be a useful technique for characterization of some of its chemical and physical properties. Particular, CL emissions result from several sources, including electronic transitions among energy levels caused by various types of structural defects.
(iii) We investigated the nanotribological properties of Zn1-xMnxO epilayers (0≤ x ≤0.16) grown by molecular beam epitaxy (MBE) on sapphire substrates. The surface roughness and friction coefficient (μ) were analyzed by means of atomic force microscopy (AFM) and hysitron triboscope nanoindenter techniques. The nanoscratch system gave the μ value of the films ranging from 0.17 to 0.07 and the penetration depth value ranging 294 to 200 nm when the Mn content was increased from x=0 to 0.16. The results strongly indicate that the scratch wear depth under constant load shows that higher Mn content leads to Zn1-xMnxO epilayers with higher shear resistance, which enhances the Mn-O bond. From the Zn1-xMnxO epilayers, the images are together with the corresponding cross-sectional height profiles. The observation of a compressive residual stress of moderate magnitude is beneficial to the film because it can suppress crack initiation. Strain energy can often be a dominant factor, which is usually plays a critical role at different film. Stick–slip motion was found, whereas the period and amplitude of stick–slip, which were averaged over each test, increased with the normal load. The profile of the pure ZnO sample shows serious wear of the components. These findings reveal that the role of Mn content on the growth of Zn1-xMnxO epilayers can be identified by their nanotribological behavior.
The interfacial area between both surface and inner films determines main physical and mechanical properties here. It has ever conducted them including contact resistance, electronic trapping and recombination, thermal conductance, and film adhesion and so on. The measurement methods: scratch and wear can be suggested that ease to aim the state of an interfacial science, such as fracture toughness or adhesion strength are taken into account from the continuous load-displacement profile by means of lateral indentation.
URI: http://hdl.handle.net/11455/2923
其他識別: U0005-1408201217102200
Appears in Collections:機械工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-8095061404-1.pdf2.76 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.