Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2924
標題: 鋯鈦酸鉛(PZT)薄膜微切削加工特性與訊號分析研究
Analysis of cutting characteristics and corresponding signals in PZT thin film micro-cutting
作者: 戴岑臻
Tai, Tsen-Chen
關鍵字: 微銑削;Micro-milling;鋯鈦酸鉛;PZT;切削力;AE訊號;PZT thin film;cutting force signal
出版社: 機械工程學系所
引用: [1] D. Dornfeld, S.Min, and Y. Takeuchi, 2006, “Recent Advances in Mechanical Micromachining ,”Annals of the CIRP, Vol. 55, No. 2, pp. 745-768. [2] P. W. Bridgman, 1953, “ Effects of Very High Pressures on Glass, ” Journal of Applied Physics, Vol. 24, pp.405-413. [3] F. Z. Fang, L. J. Chen, 2000, “Ultra-precision cutting for ZKN7 glass, ”CIRP Annals - Manufacturing Technology, Vol. 49, pp. 17–20. [4] T. G. Bifano, T.A. Dow,and R. D. Scattergood,1991, “Ductile-Regime Grinding, A new Technology for Machining Brittle Materials,” ASME Journal of Engineering for Industry, pp.184-189. [5] M. Yoshino, T. Aoki, T. Shirakashi and R. Komanduri, 2001, “Some Experiments on the Scratching of Silicon: In situ Scratching inside an SEM and Scratching under High External Hydrostatic Pressures,” International Journal of Mechanical Sciences, Vol. 43, pp.335-347. [6] F. Z. Fang and G. X. Zhang, 2003, “An Experimental Study of Edge Radius Effect on Cutting Single Crystal Silicon,” International Journal of Advanced Manufacturing Technology, pp.703–707. [7] Jiwang Yan , Tooru Asami, Hirofumi Harada and Tsunemoto Kuriyagawa,2009, “Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining,” Precision Engineering, Vol. 33, pp.378-386. [8] B. K. A. Ngoi and P. S. Sreejith, 2000, “Ductile Regime Finish Machining – A Review,” Adv Manuf Technol , pp 547–550. [9] M. B. Cai, X. P. Li, and M. Rahman, 2007, “Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamic simulation, ”International Journal of Machine Tools & Manufacture, Vol. 47,pp. 75–80. [10] J. Chae, S. S. Park, T. Freiheit, 2006, “ Investigation of micro-cutting operations, ” International Journal of Machine Tools & Manufacture, Vol. 46,pp. 313–332. [11] X.P. Li, T. He, M. Rahman, 2005, “Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer, ” Wear , Vol. 259,pp. 1207-1214 [12] T. Matsumura, T. Ono, 2008, “Cutting process of glass with inclined ball end mill. Journal of Material Processing Technology, Vol. 200, pp. 356–363. [13] C. J. Kim, J. R. Mayor, J. Ni, 2004, “ A Static Model of Chip Formation in Microscale Milling, ” Journal of Manufacturing science and engineering, Vol.126, pp. 710–718. [14] T. Matsumura, T. Hiramatsu, T. Shirakashi, T. Muramatsu, 2005, “A study on cutting force in the milling process of glass, ” Journal of manufacturing processes, Vol. 17(2), pp. 102–108. [15] M. Arif, M. Rahman, Y.S. Wong, 2011, “Analytical model to determine the critical feed per edge for ductile–brittle transition in milling process of brittle materials, ” International Journal of Machine Tools & Manufacture, Vol. 51, pp. 170–181. [16] T. Ono, T. Matsumura, 2008, “ Influence of tool inclination on brittle fracture in glass cutting with ball end mills, ”Journal of Material Processing Technology, Vol. 202, pp. 61–69. [17] M. Belmonte, P. Ferro , A.J.S. Fernandes , F.M. Costa , J. Sacramento , R.F. Silva, 2003, “Wear resistant CVD diamond tools for turning of sintered hardmetals,” Diamond and Related Materials, Vol. 12 , pp. 738–743. [18] Dongcan Zhang, Bin Shen, Fanghong Sun, 2010, “Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates,” Applied Surface Science , Vol. 256, pp. 2479–2489. [19] Z.J. Pei ,Graham R. Fisher , J. Liua , 2008, “Grinding of silicon wafers: A review from historical perspectives,” International Journal of Machine Tools & Manufacture , Vol.48, pp. 1297– 1307 [20] Ling Yin , E.Y.J. Vancoille, L.C. Lee, H. Huang, K. Ramesh, X.D. Liu, 2004, “High-quality grinding of polycrystalline silicon carbide spherical surfaces,” Wear, Vol. 256, pp. 197–207 [21] Shengjun Zhou, Chuan Liu, Xuefang Wang, Xiaobing Luo, Sheng Liu, 2011, “Integrated Process for Silicon Wafer Thinning,” Electronic Components and Technology Conference, pp. 1811-1814 [22] Paulo Beltrao, Anthony Gee, John Corbett, Roger Whatmore, 2011, “Ductile mode machining of commercial PZT ceramics,” CIRP Annals - Manufacturing Technology , Vol. 48, pp.437-440 [23] S. Arai , S.A. Wilson, J. Corbett, R.W. Whatmorea,2009, “Ultra-precision grinding of PZT ceramics-Surface integrity control and tooling design,” International Journal of Machine Tools & Manufacture, Vol. 49, pp.998-1007 [24] 宋孟桓,2008,鋯鈦酸鉛薄膜之性質量測及其在發電裝置應用之研究,國立中興大學機械工程研究所碩士論文。 [25] 饒珮瑩,2003,利用微機電技術設計及製作壓電式微型加速計,國立成功大學航空太空工程研究所碩士論文。 [26] 李正中,1999,薄膜光學與鍍膜技術,藝軒圖書出版社。 [27] M. C. Shaw, 2005, Metal Cutting Principles, Oxford University Press. [28] 張煌權,2001,包含側邊及底面犁切力之端銑及面銑力模式,國立成功大學機械研究所碩士論文。 [29] M. E. Martellotti, 1941, “An Analysis of the Milling Process, Transaction of ASME”, Vol. 63, pp. 677–700. [30] Li, X., 2002, “A Brief Review:Acoustic Emission Method for Tool Wear Monitoring During Turning”,International Journal of Machine Tool & Manufacture, Vol.42, pp.157-165. [31] 周彥成,2012,應用鑽石塗層刀具之鋯鈦酸鉛(PZT)薄膜為銑削加工特性研究,國立中興大學機械工程研究所碩士論文。
摘要: 
隨著現今科學技術的蓬勃發展,硬脆材料如單晶矽、玻璃、陶瓷、藍寶石等逐漸地被應用在各式各樣的元件之中。而在陶瓷材料中,壓電材料在近年來更是在半導體元件、光學元件、磁性元件、微電子元件和生醫元件中佔有非常重要的地位。隨著各種元件需求量的增加和微小化發展的趨勢,使得壓電材料必須發展一種高效能的材料移除方式且能獲得較佳的表面精度。
為此,本研究以槽銑方式進行斜向切削實驗,尋求如何使加工達到延性切削的臨界參數,探討PZT薄膜材料的延脆轉換區、PZT薄膜材料與矽晶圓材料之切削性能差異,並探討在不同的刀具尺寸及磨耗,對切削性能之影響。另外,觀察其切削力訊號和聲射訊號對於刀具磨耗程度和切削模式之對應性。
在尋求PZT薄膜材料/Si晶圓的延脆轉換區方面,在四個進給條件下,於單純加工PZT薄膜(厚度<1μm)的範圍內,無法達成,導致此結果發生的可能原因為PZT薄膜的膜厚(1μm)不足。但於PZT薄膜/Si晶圓(厚度>1μm)的範圍內,在進給速度為0.150μm/rev的條件下,切削深度在薄膜厚度約2.7μm的條件下為延性加工。
在切削力參數對切削力的影響方面,在三個進給條件下,於單純加工PZT薄膜(厚度<1μm)的範圍內,當進給速度為5mm/min(0.025μm/rev)時,在X與Y軸向的切削力會有最大值,0.075μm/rev對應之切削力次之,0.005μm/rev進給對應之切削力最小,受到尺寸效應的影響;在三種刀徑的條件下,在X、Y軸向PZT薄膜的切削力大小和刀徑大小成正比;在切削工件材料性質方面,切削PZT薄膜材料所需的切削力較矽晶圓大;在鑽石塗層相較於未塗層刀具方面,在加工時的X軸向切削力(進給方向)並無明顯的變化;在Y軸和Z軸方向有鑽石塗層的刀具具有較小的切削力,尤其是Z軸的切削力約相差1.5倍。
在訊號與切削模式之關連性分析方面,使用動力計訊號的高頻變動可判斷加工時材料破裂的發生。於塗層刀具塗層脫離前後,可確認AE訊號與塗層刀具狀態有互相對應之關係。

The PZT thin film draws much more attention in developing the MEMS device. However, the efficiency of patterning by etching process limits its application to different field. To improve the flexibility and efficiency in the manufacturing of PZT thin film based device, micro metal cutting process provides a potential solution if the ductile mode cutting can be achieved during manufacturing. In this study, the performance in the micro milling of PZT thin film and Si wafer, along with the CVD diamond coated micro tool, was investigated. The experiments were conducted on a three-axis high precision machine tool integrated with a vacuum chuck, a Kistler mini dynamometer, an AE sensor. After performing machining, the chip was collected and investigated by the SEM. The profile and surface roughness of the finished surface were investigated by a white light interferometers and a microscope as well.
The results show that the fracture on the machined surface can be observed not only by the chip shape, but also by the white light interferometers. Based on the observation, the ductile mode machining can be obtained for Si wafer machining, but not available for PZT thin film machining with the depth of cut lower than 1 um. In investigating the cutting force, its value in the PZT thin film machining is larger than in Si wafer machining. The relationship between the cutting force signal and the fracture of material was also be obtained by investigating the surface profiles and the force signals. Finally, the cutting quality were found to be improved by introducing the water as cutting fluid in machining the PZT thin film deposited Si wafer.
URI: http://hdl.handle.net/11455/2924
其他識別: U0005-2708201312205900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.