Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2925
DC FieldValueLanguage
dc.contributor范光堯zh_TW
dc.contributor.author徐豪志zh_TW
dc.contributor.authorHsu, Hau-Chien_US
dc.contributor.other機械工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-05T11:44:20Z-
dc.date.available2014-06-05T11:44:20Z-
dc.identifierU0005-2908201315343600en_US
dc.identifier.citation[Al04] Alasty, A., Shameli, E., 2004, “Dynamic Modeling of a New Varying Stress SMA Actuator for Precise Applications,” ICM ''04. Proceedings of the IEEE International Conference, p. 209-214. [Ar11] Arabi-Jeshvaghani, R., Emami, M., Shahverdi, H. R., Hadavi, S. M. M., 2011, “Effects of Time and Temperature on the Creep Forming of 7075 Aluminum Alloy: Springback and Mechanical Properties,” Materials Science and Engineering A, 528, p. 8795-8799. [As09] American Society for Testing and Materials, 2009, “Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials,” Designation: E21-09. [As10] American Society for Testing and Materials, 2010, “Standard Test Method for Transformation Temperature of Nick-el-Titanium Alloys by Thermal Analysis,” Designation: F2004-05. [As11] American Society for Testing and Materials, 2011, “Standard Test Methods for Tension Tests of Metallic Materials,” Designation: E8/E8M-11. [Br04] Brinson, L. C., Schmidt, I., Lammering, R., 2004, “Stress-Induced Transformation Behavior of a Polycrystalline NiTi Shape Memory Alloy: Micro and Macromechanical Investigations Via in Situ Optical Microscopy,” Journal of the Mechanics and Physics of Solids, 52, p. 1549-1571. [Br96] Brailovski, V., Brailovski, F., 1996, “Review of Shape Memory Alloys Medical Applications in Russia,” Bio-Medical Materials and Engineering, 6, p. 291-298. [Ca76] Castleman, L. S., Motzkin, S. M., Alicandri, F. P., Bonavit, V. L., 1976, “Biocompatibility of Nitinol Alloy as an Implant Material,” Journal Biomedical Materials Research, 10, p. 695-731. [Ch00] 成虹,2000,形狀記憶合金及其應用,北京市:高等教育出版社。 [Ch11] 陳怡安、邵舜裕、陳彥年,2011,鎳鈦合金髓內釘開發,台灣鍛造協會100年年會論文集。 [Ch51] Chang, L. C., Read, T. A., 1951, “Plastic Deformation and Diffusionless Phase Changes in Metals-The Gold-Cadmium Beta Phase,” Transactions of the American Institute of Mining Engineers,189, p. 47-52. [Da93] Dai, K. R., Hou, X. K., Sun, Y. H., Tang, R. G., Qiu, S. J., Ni, C., 1993, “Treatment of Intra-articular Fractures with Shape Memory Compression Staples,” International Journal of the Care of the Injured, 24, p. 651-655. [Fu84] 舟久保熙康,1984,形狀記憶合金,東京:產業圖書。 [Gr38] Greninger, A. B., Mooradian, V. G., 1938, “Strain Transfor-mation in Metastable Copper-Zinc and Beta Copper-Tin Al-loys,” Transaction of American Chemical Society, 54, p. 3819-3833. [Ho74] Hong, H. C., Wayman, C. M., 1974, Acta Metallurgica Sinica, 22, p. 887. [Ho96] Hodgson, D. E., Wu, M. H., Biermann, R. J. 1996, “Shape Memory Alloys,” http://www.sma-inc.com/SMAPaper.html. [Ka11] Kasuga, Y., Kmai, T., Yoshida, K., Kawamori, S., Okai, T., 2011, “Joining of a Shaft with a Disk by Shape Memory Polymer or Alloy Taking Easy Disassembly into consideration,” SteelRresearch International, p. 639-644. [Ko87] 小玉周男、佐藤忠行、大川淳、本間敏夫,1987,TiNi系形狀記憶合金的冷間彎曲加工關係之基礎研究,選鑛製鍊研究所報告,第1029號,第43卷,第2號。 [Ku10] Kumar, P. K., Lagoudas, D. C., 2011, “Experimental and Mi-crostructural Characterization of Simultaneous Creep, Plasticity and Phase Transformation in Ti50Pd40Ni10 High-Temperature Shape Memory Alloy,” Acta Materialia, 58, p. 1618-1628. [La01] Laster, Z., MacBean, A. D., Ayliffe, P. R., Newlands, L. C., 2001, “Fixation of a Frontozygomatic Fracture with a Shape-Memory Staple,” British Journal of Oral and Maxillofacial Surgery, 39, p. 324-325. [Ma01] Makino, E., Mitsuya T., Shibata, T., 2001, “Fabrication of TiNi Shape Memory Micropump,” Sensors and Actuators, A88, p. 256-262. [Ol32] Olander, A., 1932, “The Crystal Structure of AuCd,” Z. Kristallogr, 83A, p. 145-148. [Ot98] Otsuka, K., Wayman, C. M., 1998, Shape Memory Materials, Cambridgeshire: Cambridge University Press, p. 133-147. [Po94] Poulek, V., 1994, “Testing the New Solar Tracker with Shape Memory Alloy Actors,” IEEE First World Conference on Photovoltaic Energy Conversion, Volume 1, p. 1131-1133. [Sa03] Sakai, K., Okada, H., Tanigawa, M., Yasuda, T., 2003, “Study of Auto-Disassembly System Using Shape Memory Alloy,” Proceedings of Ecodesign 2003: Third International Symposium on Environmentally Conscious Design and Inverse Manufacturing, p. 504-509. [Si01] Siegert, K., 2001, “Forming of Nitinol A Challenge,” New De-velopments in Forging Technology, p. 119-134. [Su98] Suzuki, Y., 1998,“Fabrication of Shape Memory Alloys,” in Shape Memory Materials, ed., K. Otsuka and C.M. Wayman, Cambridgeshire: Cambridge University Press. [Th08] Thipprakmas, S., Rojananan, S., 2008, “Investigation of Spring-go Phenomenon Using Finite Element Method,” Materials and Design, 29, p. 1526-1532. [Ts06] Tschaetsch, H., 2006, Metal Forming Practise Pro-cess-Machines-Tools, Berlin: Springer Verlag. [Wa80] Wayman, C. M., 1980, “Some Applications of Shape Memory Alloys,” Journal of Metals, 32, 129. [Wu01] Wu, M. H., 2001,“Fabrication of Nitinol Materials and Components,” Proceedings of the International Conference on Shape Memory and Superelastic Technologies, p. 285-292. [Xu11] Xue, D., Zhou, Y., Ren, X., 2011, “The Effect of Aging on the B2-R Transformation Behaviors in Ti-51at%Ni Alloy,” Intermetallics, 19, p. 1752-1758. [Ya04] 楊大智,2004,智能材料與智能系統,台北縣:新文京開發。 [Ya93] 楊杰、吳月華,1993,形狀記憶合金及其應用,合肥市:中國科學技術大學出版社。 [Za04] Zafer, T., 2004, “An Experimental Study on the Examination of Springback of Sheet Metals with Several Thicknesses and Properties in Bending Dies,” Journal of Materials Processing Technology, 145, p. 109-117. [Zh11a] Zhan, L., Lin, J., Dean, T. A., Haung, M., 2011, “Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 under Creep Age Forming Conditions,” International Journal of Mechanical Sciences, 53, p. 595-605. [Zh11b] Zhan, L., Lin, J., Huang, M., 2011, “Study on Springback in Creep Age Forming of Aluminium Sheets,” Proceedings 10th International conference Technology Plastic, p. 692-697.en_US
dc.identifier.urihttp://hdl.handle.net/11455/2925-
dc.description.abstract本研究採熱機成形之方法,將鎳鈦合金線之形狀記憶處理及彎曲成形結合為一製程,且藉熱機製程使鎳鈦合金產生潛變效應,減少彎曲成形後之回彈量,提供鎳鈦合金成形製程的另一選擇;其中將成形溫度與處理時間設為製程因子,藉由實驗得出製程因子對回彈量之影響。同時,本研究藉材料試驗法得鎳鈦合金材料的相關熱機特性資料,建立鎳鈦合金於有限元素軟體之材料模型,藉有限元素模擬解釋成形溫度與處理時間對回彈量之影響。由實驗及有限元素模擬之結果得出,當成形環境溫度越高時,其有效減少成形後回彈量之產生;當成形時處理時間越長,其使鎳鈦合金材料因潛變效應,而產生應力鬆弛,藉此降低成形後之回彈量。另外,本研究將熱機成形後之鎳鈦合金工件使用DSC量測其相變態溫度,藉此了解成形溫度及處理時間對相變態溫度之影響;最後,另有將熱機成形後之鎳鈦合金工件進行形狀恢復率之測試,其形狀恢復率達99%以上。文中所建立的熱機V型彎曲成形製程,成功地減少鎳鈦合金線成形後之回彈量,其成果足供相關業者改善現況。zh_TW
dc.description.abstractThe aim of this study is that shape memory treatment and V-bending process for nickel-titanium alloy wire are able to be accomplished within one thermomechanical process at high temperature. This method could provide an alternative choice for the nickel-titanium shape memory alloy wire to reduce the spring-back in V-bending process due to the creep effect. In this study, the influences of forming temperatures and process time on spring-back were studied. Furthermore, experiment was carried out to verify with the finite element analysis results. The material model used in finite element analysis was based on the mechanical properties of nickel-titanium alloy obtained by material testing. The results showed that the reduction of spring-back was more obviously when the forming temperature was increased. Spring-back could also reduce when the process time was long which resulted in stress relaxation due to the creep effect. In addition, to understand the effects of forming temperatures and process time on the phase transformation temperature, its measurement was executed by the DSC equipment. The testing of shape recovery rate of nickel-titanium alloy was conducted and the rate was more than 99%. Accordingly, the results of this study could offer a reference for the industry to improve the spring-back of V-bending process.en_US
dc.description.tableofcontents誌謝 摘要 i Abstract ii 目錄 iii 表目錄 v 圖目錄 vi 符號表 x 1 前言 1 1.1 文獻回顧 2 1.1.1 生醫用扣釘 2 1.1.2 形狀記憶合金 3 1.1.3 V型彎曲 8 1.1.4 金屬塑性變形 10 1.1.5 回彈 12 1.1.6 鎳鈦合金熱機成形與彎曲成形 15 1.2 研究目的與方法 18 2 實驗設定 19 2.1 V型熱機彎曲成形實驗設備 19 2.2 實驗設定 23 2.3 材料拉伸試驗 25 3 有限元素模擬分析 27 3.1 鎳鈦形狀記憶合金於材料模型 27 3.2 分析模型建構 34 4 結果與討論 37 4.1 彎曲成形之負荷變化 37 4.2 形狀記憶處理之負荷變化 43 4.3 回彈量之變化 45 4.4 相變態溫度之變化 50 4.5 形狀恢復率 56 5 結論 58 6 參考文獻 60 附錄A 成形模具 64 附錄B 彎曲成形上死點 68 附錄C 形恢復率實驗 69 附錄D 有限元素分析結果之圓角量測 73 附錄E 45°熱機彎曲成形與記憶處理 74 附錄F DEFORM應變率設定值對模擬結果之影響 78 附錄G 彎曲部位軸向應力分布 80 附錄H 回彈實驗值 86 附錄I 酸洗 89 附錄J DSC量測圖 90zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908201315343600en_US
dc.subject形狀記憶合金zh_TW
dc.subjectShape memory alloyen_US
dc.subject熱機成形zh_TW
dc.subjectV型彎曲成形zh_TW
dc.subject應力鬆弛zh_TW
dc.subject有限元素分析zh_TW
dc.subjectThermomechanical processen_US
dc.subjectV-bendingen_US
dc.subjectStress relaxationen_US
dc.subjectFinite element analysisen_US
dc.title鎳鈦形狀記憶合金線於熱機V型彎曲成形及其形狀記憶效應研究zh_TW
dc.titleStudy on Shape Memory Effect in Thermomechanical V-Bending of Ni-Ti Shape Memory Alloy Wireen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:機械工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.