Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2928
標題: 雙軸向超音波振動輔助車削之研究
A Study on Two-Axis Ultrasonic Assisted Turning
作者: 柯博修
Ko, Po-Hsiu
關鍵字: 超音波振動輔助車削;Ultrasonic Assisted Turning;切削路徑;表面粗糙度;切削力;Cutting Path;Surface Roughness;Cutting Force
出版社: 機械工程學系所
引用: [Weber et al, 1984] H. Weber, J. Herberger and R. Pilz, “Turning of machinable glass ceramics with an ultrasonically vibrated tool,” Annals of the CIRP, Volume 33, Number 1, Pages 85-87, 1984. [Shaw, 1991] M. C. Shaw, Metal Cutting Principles, Clarendon Press, Oxford, 1991. [Moriwaki & Shamoto , 1991] T. Moriwaki and E. Shamoto, “Ultraprecision diamond cutting of hardened steel by applying vibration cutting,” Annals of the CIRP, Volume 40, Number 1, Pages 559-562, 1991. [Moriwaki & Shamoto, 1992] T. Moriwaki and E. Shamoto, “Ultraprecision ductile cutting of glass by applying ultrasonic vibration,” Annals of the CIRP, Volume 41, Number 1, Pages 141-144, 1992. [Moriwaki & Shamoto, 1995] T. Moriwaki and E. Shamoto, “Ultrasonic elliptical vibration cutting,” Annals of the CIRP Volume 44, Number 1, Pages 31-34, 1995. [Kim & Lee, 1997] J. D. Kim and E. S. Lee, “Ultrasonic vibration cutting of a hypereutectic Al-Si alloy,” Aluminium (Dusseldorf), Volume 73, Number 9, Pages 624, 1997. [Kim & Choi, 1997] J. D. Kim and I. H. Choi, “Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics,” Materials Processing Technology, Volume 68, Pages 89-98, 1997. [Shamoto et al, 1999] E. Shamoto, M. Chunxiang and T. Moriwaki, “Ultraprecision ductile cutting of glass by ultrasonic elliptical vibration cutting,” Proc of 1st Int Conf of European Society Presion Engineering and Nanotechnology, Pages 408-411, 1999. [Schumutz et al,2001] J. Schumutz, E. Brinksmeier and E. Bischoff, “Sub-surface deformation in vibration cutting of copper,” Precision Engineering, Volume 25, Number 3, Pages 218-223, 2001. [Gao et al, 2002] G. F. Gao, B. Zhao, F. Jiao and C. S. Liu, “Research on the influence of the cutting conditions on the surface microstructure of ultra-thin wall parts in ultrasonic vibration cutting,” Journal Materials Processing Technology, Volume 129, Number 1-3, Pages 66-70, 2002. [Karube et al, 2002] S. Karube, W. Hoshino, T. Soutome and K. Sato, “The non-linear phenomena in vibration cutting system: The establishment of dynamic model,” International Journal of Non-Linear Mechanics, Volume 37, Issue 3, Pages 541-564, 2002 [Babitsky et al, 2004] V. I. Babitsky, A. V. Mitrofanov and V. V. Silberschmidt, “Ultrasonically assisted turning of aviation materials: simulations and experimental study,” Ultrasonics, Volume 42, Pages 81-86, 2004. [Ma et al, 2004] C. Ma, E. Shamoto, T. Moriwaki and L. Wang, ”Study of Machining Accuracy in Ultrasonic Elliptical Vibration Cutting,” International Journal of Machine Tools and Manufacture, Volume 44, Issue 12-13, Pages 1305-1310, 2004. [Shamoto et al, 2005] E. Shamoto, N. Suzuki, R. Hino, E. Tsuchiya, Y. Hori, H. Inagaki and K. Yoshino, ”A New Method to Machine Sculptured Surfaces by Applying Ultrasonic Elliptical Vibration Cutting,” Micro-NanoMechatronics and Human Science, 2005 IEEE International Symposium on, Issue 1087-9, Number 2005, Pages 91 – 96,2005. [Shamoto et al, 2005] E. Shamoto, N. Suzuki, E. Tsuchiya, Y. Hori, H. Inagaki and K. Yoshino, ”Development of 3 DOF Ultrasonic Vibration Tool for Elliptical Vibration Cutting of Sculptured Surfaces,” Annals of the CIRP, Volume 54, Number 1, Pages 321-324, 2005. [Shamoto et al, 2005] E. Shamoto, N. Suzuki, T. Moriwaki and Y. Naoi, “Development of Ultrasonic Elliptical Vibration Controller for Elliptical Vibration Cutting,” Annals of the CIRP, Volume 51, Number 1, Pages 327-330, 2002. [Li et al, 2006] X. Li, D. Zhang “Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting,” Journal of Materials Processing Technology, Volume 180, Number 1-3, Pages 91-95, 2006. [Brehl et al, 2006] D.E. Brehl and T.A. Dow, “Review of vibration-assisted machining,” Precision Engineering, Volume 32, Issue 3, Pages 153-172, 2008. [Suzuki et al,2007] N. Suzuki, M. Haritani, J. Yang, R. Hino and E. Shamoto, “Elliptical Vibration Cutting of Tungsten Alloy Molds for Optical Glass Parts,” Annals of the CIRP, Volume 56, Issue 1, Pages 127-130, 2007 [Shamoto et al, 2008] E. Shamoto, N. Suzuki and R. Hino, “Analysis of 3D elliptical vibration cutting with thin shear plane model,” Annals of the CIRP, Volume 57, Issue 1, p 57-60, 2008 [Amini et al, 2008] S. Amini, H. Soleimanimehr, M.J. Nategh, A. Abudollah and M.H. Sadeghi , “FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool,” Journal of Materials Processing Technology, Volume 201, Issue 1–3, Pages 43-47, 2008 [Ma et al, 2011] C. Ma, J. Ma, E. Shamoto and T. Moriwaki, “Analysis of regenerative chatter suppression with adding the ultrasonic elliptical vibration on the cutting tool,” Precision Engineering, Volume 35, Issue 2, Pages 329-338, 2011 [Ma et al, 2011] C. Ma, E. Shamoto, T. Moriwaki, Y. Zhang and L. Wang, “Suppression of burrs in turning with ultrasonic elliptical vibration cutting,” International Journal of Machine Tools and Manufacture, Volume 45, Issue 11, Pages 1295-1300, 2005. [Suzuki et al, 2011] N. Suzuki, H. Yokoi and E. Shamoto, “Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration cutting,” Precision Engineering, Volume 35, Issue 1, Pages 44-50, 2011 [隈部淳一郎,1985] 隈部淳一郎,精密加工振動切削基礎的應用,機械工業出版社,1985。 [賴耿陽,2001] 賴耿陽,超音波工學理論及實務,復漢出版社,2001。 [簡國諭,2002] 簡國諭,超音波振動輔助車削之研究,國立中正大學機械工程學系碩士論文,2002。 [王信誌,2004] 王信誌,螺旋刃球形銑刀之切削表面粗糙度探討,國立中興大學機械工程系碩士論文,2010。 [張進德,2005] 張進德,應用壓電片於固定樑之模態分析,國立高雄海科技大學輪機工程所,2005。 [施景翔,2006] 施景翔,超音波振動輔助切削之共振頻率偵測追蹤電路之研究, 國立中正大學機械工程學系碩士論文,2006。 [吳慧帆,2008] 吳慧帆,超音波振動輔助切削裝置之開發,國立中正大學機械工程系碩士論文,2008。 [周思成,2010] 周思成,振動輔助車削之加工效果探討,國立中興大學機械工程系碩士論文,2010。
摘要: 
隨著科技與產業技術的發展,業界需要在硬脆性材料上進行高精度、高品質之表面加工,目前已經證實超音波振動輔助切削能有效降低切削力以及提升表面品質的效果,但關於超音波振動輔助切削的研究主要專注在實驗驗證上,理論分析相對缺乏,故本研究先針對超音波振動輔助車削之加工進行理論之探討,並設計製造一具雙軸超音波振動之刀具,進一步進行實驗以確認其效果。
本研究先以齊次座標轉換的方法推導工件與車削刀具之相對運動,亦即切削之軌跡,進一步以此為基礎建立一般正交車削、一維振動輔助車削及二維的雙軸向振動輔助車削之切削深度、切削力與表面粗糙度的模型,藉此理論模型以分析超音波振動輔助車削之加工機制,並藉由分析不同軸向超音波振動輔助車削造成切削力及表面品質的原因,進一步歸納出最佳超音波振動輔助車削的振動形式。
研究除了理論模型之建置外,更進一步利用懸臂樑側向振動理論,搭配結構分析軟體模擬,設計一雙軸超音波振動輔助車削之刀把,再以該刀把進行車削實驗並與理論互相比對分析其結果。實驗結果顯示,雙軸向振動輔助車削因同時擁有切削方向及軸向振動的特色,能在工件表面上執行二維的往復式切削,使得表面品質提昇,另外,分析結果也顯示,工件表面之加工品質可隨振動頻率及振幅提升而改善。當刀把無振動切削時,工件表層紋路會因刀鼻之幾何形貌而造成凹溝,使得加工表面甚為粗糙,而給予切削方向振動後,因為往復式的切削,造成表面凹溝變小,雖然變化不大但仍可以提昇工件表面之加工品質;當刀把加入軸向振動後,刀具開始能夠有效地移除因刀鼻幾何形貌所造成的凹溝,凸緣被移除而產生較佳的表面品質。

With the rapid stride of technology and industry, the industry community demand high-precision and high-quality surface finish in brittle materials. It has proved that ultrasonic assisted turning have the effct of to reduce the cutting force and promote the surface quality. Most of studies about ultrasonic assisted turning which focus on experiments but lack of the theoretical analysis. That is the reason of the study will discuss the theory of ultrasonic assisted turning on process.
First, we derived the cutting path of the workpiece and tool by the coordinate transformation method in this study; furthermore, we construct the general orthogonal cutting, one-dimensional ultrasonic assisted cutting and two-dimensional composite elliptical ultrasonic assisted turning of the cutting force and surface roughness theoretical model. By this model to realize why ultrasonic assisted turning can reduce the cutting force and promote the surface quality; Besides, it also use the micro-cantilever transverse vibration theory with simulation by ANSYS. Design a two-axis ultrasonic assisted turning tool . At last, compare and analyze the results of the experiment and theory.
The results show that the elliptical vibration-assisted turning both have the tangent-direction and axial- direction vibration, it is able to reciprocating cutting of two-dimensional on the surface and get the best surface quality. In addition, if we improve frequency or amplitude effectively, the surface quality will improve again, we predict this phenomenon by surface. When non-vibration cutting, the surface texture will produce pits caused by the geometry impact of tool nose, it’s the worst surface roughness. Tangent direction vibration can solve the problem because of reciprocating cutting. It reduces the pits and increases the surface quality. While we join the axial-direction vibration can solve the phenomenon of pits absolutely, we can attain a better surface quality, further.
URI: http://hdl.handle.net/11455/2928
其他識別: U0005-1807201219342400
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.