Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2932
標題: 電解液與碳氈改良對全釩氧化還原電池性能改善之實驗探討
Experimental Study on the Vanadium Redox Flow Battery Performance Improvement with Modified Electrolytes and Carbon Felts
作者: 龔盈瑝
Kung, Ying-Huang
關鍵字: 釩電池;Vanandium redox battery;電解液改質;碳氈改質;分光光度計;electrolyte composition;carbon felt;spectrophotometer
出版社: 機械工程學系所
引用: 【1】 R. Ahuja, J. Blomqvist, P. Larsson, P. Pyykko, P.Zaleski-Ejgierd, “Relativity and the lead-acid battery,” Physical Review Letter 106 (2011) 018301 【2】 M. Rahman., J. Wang, X. Deng, Y. Li , H. Liu, “Hydrothermal synthesis of nanostructured Co3O4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery,” Electrochimica Acta 55 (2009) 504–510 【3】 Y.H. Pan, V. Srinivasan, C.Y. Wang, “An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni–MH cells, ” Journal of Power Sources 112 (2002) 298–306 【4】 J.H. Thaller, “Electrally rechargeable redox flow cell, ” United States Patent 19(1976) 3996064 【5】 E. Sum, M. Skyllas-Kazacos, “Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery,”Journal of Power Sources 15 (1985) 179-185 【6】 C. Ponce de Le’on, A. Fr’ıas-Ferrer, J. Gonz’alez-Garc’ıa , D.A. Sz’anto, F.C. Walsh, “Redox flow cells for energy conversion,” Journal of Power Sources 160 (2006) 716–732 【7】 M. Skyllas-Kazacos, M. Kazacos, “State of charge monitoring methods for vanadium redox flow battery control,” Jounal of Power Sources 196 (2011) 8822– 8827 【8】 C. Sun, J. Chen, H. Zhang, X. Han, Q. Luo, “Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery,” Jounal of Power Sources 195(2010) 890-897 【9】 F. Rahman, M. Skyllas-Kazacos, “Vanadium redox battery: positive half-cell electrolyte studies, ”Journal of Power Sources 189 (2009) 1212–1219 【10】 L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, “A Stable vanadium redox-flow battery with High energy density for large-scale energy storage,”Advanced Energy Materials 1 (2011)394-400 【11】 S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li , J. Liu, Z. Yang, M.A. Hickner, “Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries,” Electrochemistry Communications 12 (2010) 1650–1653 【12】 C. Jia, J. Liu, C. Yan, “A significantly improved membrane for vanadium redox flow battery,” Journal of Power Sources 195 (2010) 4380–4383 【13】 Q. Luo, H. Zhang, J. Chena, P. Qian, Y.Zhai, “Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications,” Journal of Membrane Science 311 (2008) 98–103 【14】 K. J. Kim, Y.Kim, J. Kim, M. Park, “The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries,” Materials Chemistry and Physics 131 (2011) 547–553 【15】 K.W. Knehr, E.C. Kumbur, “Open circuit voltage of vanadium redox flow batteries: Discrepancy between models and experiments,” Electrochemistry Communications 13 (2011) 342–345 【16】 Z. Gonzalez, A. Sanchez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, “Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery,” Electrochemistry Communications 13 (2011) 1379–1382 【17】 S. Li, K. Huang, S. Liu, D. Fang, Xi.Wu, D. Lu, T. Wu, “Effect of organic additives on positive electrolyte for vanadium redox battery,” Electrochimica Acta 56 (2011) 5483–5487 【18】 D. Xing, S. Zhang, C. Yin, B. Zhang, X. Jian, “Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application,” Journal of Membrane Science 354 (2010) 68–73 【19】 X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chen, “Nafion organically modified silicate hybrids membrane for vanadium redox flow battery, ” Journal of Power Sources 189 (2009) 1240–1246 【20】 鄭華生,“分析化學”清大出版社(2007) 【21】 陳富于,陳暉,侯紹宇,劉建國,嚴川偉,“釩電池電解液中不同價態釩的分光光度分析,”Spectroscopy and Spectral Analysis 31(2011) 2839-2842 【22】 D. Youa, H.Zhanga, C. Sunb, X. Maa, “Simulation of the self-discharge process in vanadium redox flow battery, ”Journal of Power Sources 196 (2011) 1578–1585 【23】 D. Aaron, Z. Tang, A.B. Papandrew, T.A. Zawodzinski, “ Polarization curve analysis of all-vanadium redox flow batteries,” Journal of Applied Electrochemistry, 10.1007/s10800-011-0335-7 【24】 E. Kjeang, T. Proctor, A.G. Brolo, D.A. Harrington, “High-performance microfluidic vanadium redox fuel cell,” Electrochimica Acta 52(2007) 4942-4946 【25】 N. Zhu, X. hen, T. Zhang, P. Wu, P. Li, J. Wu, “Improved performance of membrane free single-chamber air-cathode microbialfuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes,” Bioresource Technology 102 (2011) 422–426 【26】 吳政益 “電解液靈動型態對全釩氧化還原電池效能影響之實驗探討”,碩士論文,中興大學機械工程學系(2011)
摘要: 
本文為探討全釩氧化還原液流電池(Vanadium Redox Battery, VRB)性能之改善,第一部分為基礎電池選定,選用硫酸氧釩和硫酸、硫酸氧釩和鹽酸、硫酸氧釩和硫酸、鹽酸等三種電解液組成,分別調整流速、濃度和使用不同離子交換膜做為參數條件,利用測量開路電壓(Open-circuit Voltage, OCV)方式,測量自放電率。再將上列最佳參數組合,使用四種不同處理方式的碳氈做OCV實驗,由實驗結果得知以2.5M硫酸氧釩、2.5M硫酸和6M鹽酸組成電解液,並使用雙氧水和硫酸浸泡後的薄膜和利用浸泡和加熱處理方式的碳氈,流量在50mL/min,有最佳開路電壓效能,並做為基礎電池參數條件。
第二部分將以第一部分所得知最佳電解液、薄膜處理以及碳氈改質方式進行20次充放電循環,在電流密度為20mA/cm2、40mA/cm2和60 mA/cm2下,測量電壓效率、庫倫效率和能量效率並與2M VOSO4 in 3M H2SO4電解液比較。實驗過程中可發現在同樣電流密度下VOSO4- H2SO4-HCl電解液有較佳的電壓效率,是因硫酸和鹽酸中的陰離子和碳氈改質降低了VRB中的內電阻。隨著電流密度上升,電容量下降的趨勢有所趨緩,同時也增加了庫倫效率。為了解釩離子於VRB操作時濃度之變化,本研究利用光分分度計,建立釩離子的濃度之線性迴歸方程式,應用到未來進行VRB充放電過程中釩離子濃度之變化。
關鍵字:釩電池、電解液改質、碳氈改質、分光光度計

Vanandium redox battery (VRB) is known as the most suitable energy storage device for the renewable energy systems. However, it suffers the problem of energy capacity loss after long term charge-discharge operation. The main reasons for the capacity loss are mainly caused by the crossover of vanadium ions crossing the ion exchange membrane and the electrolyte stability. In this study, we aim to improve the VRB capacity by enhancing the electrolyte stability and reducing the ion crossover. The approaches used are modifications on the electrolyte composition, membrane, and carbon felt. Experiments are performed to identify effects produced from each component modification.

Based on the experimental results, it was found that with the electrolyte solution composed of 2.5M vanadyl sulfate, 2.5M sulfuric acid, and 6M hydrochloric acid, combined with the uses of heat treated carbon felt, and hydrogen peroxide/sulfuric acid soaked Nafion membrane, can produce the best result based on the battery self-charge current-voltage measurement. Using this combined electrolyte-membrane-carbon felt system, the battery charge-discharge performance shows that the capacity can be improved as compared with the battery operated using traditional electrolyte composed of 2M vanadyl sulfate and 2.5M sulfuric acid. The electrolyte volume changes in both positive and negative compartments were also measured and the variation trends agreed with those reported in the literatures. To realize the vanadium ion concentration changes during the self-discharge and charge-discharge processes, a concentration measurement technique based on spectrophotometer was also developed in this study. The measured ion concentrations results (V3+ and V4+) agreed with those reported in the literature. However, further development on ion concentration measurement is needed because spectrophotometer cannot be applied to the V2+ and V5+ concentrations measurement due to their stabilities in acid solution.
keywords: Vanandium redox battery, electrolyte composition, carbon felt, spectrophotometer
URI: http://hdl.handle.net/11455/2932
其他識別: U0005-2008201215091400
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.