Please use this identifier to cite or link to this item:
標題: 高溫型質子交換膜燃料電池特性之數值模擬
Numerical Modeling on the High-temperature Proton Exchange Membrane Fuel Cell
作者: 林雨衡
Lin, Yu-Heng
關鍵字: 燃料電池;fuel cell;高溫型質子交換膜;聚苯並咪唑;high-temperature proton exchange membrane;polyberzimidazole
出版社: 機械工程學系所
引用: 【1】 黃鎮江,”燃料電池”,滄海書局,2008 【2】 【3】 J. A. Asensio, E. M. Sa’nchez, P. Go’mez-Romero, “Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest,” Chemical Society Reviews 39 (2010) 3210-3239 【4】 C. Siegel, G. Bandlamudi, A. Heinzel,“Systematic characterization of a PBI/H3PO4 sol-gel membrane-modeling and simulation,” J. Power Sources 196 (2011) 2735-2749 【5】 M. Mamlouk, T. Sousa, K. Scott,“A high temperature polymer electrolyte membrane fuel cell model for reformate gas,” doi:10.4061/2011/520473 【6】 M. Secanell, K. Karan, A. Suleman, N. Djilali,“Multi-variable optimization of PEMFC cathodes using an agglomerate model,” Electrochimica Acta 52 (2007) 6318-6337 【7】 D. Harvey, J. G. Pharoah, K. Karan,“A comparison of different approaches to modeling the PEMFC catalyst layer,” J. Power Sources 179 (2008) 209-219 【8】 T. Sousa, M. Mamlouk, K. Scott,“An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes,” J. Chemical Engineering Science 65 (2010) 2513-2530 【9】 K. Broka, P. Ekdunge,“Modeling the PEM fuel cell cathode,” J. Applied Electrochemistry 27 (1997) 281-289 【10】 D. F. Cheddie, N. D. H. Munroe,“A two-phase model of an intermediate temperature PEM fuel cell,” J. Hydrogen Energy 32 (2007) 832-841 【11】 H. Pu, W. H. Meyer, G. Wegner,“Proton transport in polybenzimidazol blended with H3PO4 or H2SO4,” J. Polymer Science:Part B:Polymer Physics, 40 (2002) 663-669 【12】 D. Cheddie, N. Munroe,“Mathematical model of a PEMFC using a PBI membrane,” Energy Conversion and Management 47 (2006) 1490-1504 【13】 D. Cheddie, N. Munroe,“Parametric model of an intermediate temperature PEMFC,” J. Power Sources 156 (2006) 414-423 【14】 D. F. Cheddie, N. D. H. Munroe,“Three dimensional modeling of high temperature PEM fuel cells,” J. Power Sources 160 (2006) 215-223 【15】 Q. Li, H. A. Hjuler, N. J. Bjerrum,“Phosphoric acid doped polybenzimidazole membranes Physiochemical characterization and fuel cell applications,” J. Applied Electrochemistry 31 (2001) 773-779 【16】 O. Shamardina, A. Chertovich, A. A. Kulikovsky, A. R. Khokhlov,“A simple model of a high temperature PEM fuel cell,”Int. J. Hydrogen Energy 35 (2010) 9954-9962 【17】 C. Siegel, G. Bandlamudi, A. Heinzel,“Numerical simulation of a high-temperature PEM (HTPEM) fuel cell,”Excerpt from the Proceedings of the COMSOL Users Conference 2007 Grenoble 【18】 F. M. Serincan, S. Yesilyurt, “Modeling transients of a proton electrolyte membrane fuel cell (PEMFC),”Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005 【19】 Q. Ye, T. V. Nguyen, “Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary Functions,” J. Electrochemical Society 154 (12) (2007) B1242-1251 【20】 A. F. Mills, Mass Transfer, Prentice Hall Inc, Upper Saddle River, NJ, USA,2001 【21】 張敏興,“高溫型質子交換膜燃料電池理論分析與實驗研究研究成果報告(精簡版)”,行政院國家科學委員會專題研究計畫 成果報告 (2008) 【22】 M. Grujicic, K. M. Chittajallu,“Design and optimization of polymer electrolyte membrane (PEM) fuel cells,” J. Applied Surface Science 227 (2004) 56-72 【23】 J. Hu, H. Zhang, J. Hu, Y. Zhai, B. Yi,“Two dimensional modeling study of PBI/H3PO4 high temperature PEMFCs based on electrochemical methods,” J. Power Sources 160 (2006) 1026-1034 【24】 J. Lobato, P. Ca˜nizares, M. A. Rodrigo, J. J. Linares, J. A. Aguilar,“Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC,” J. Membrane Science 306 (2007) 47-55 【25】 Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell,“Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells,” J. Electrochemical Society 151(1) (2004) A8-A16 【26】 G. Lin, W. He, T. Van Nguyen,“Modeling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell,” J. Electrochemical Society 151 (12) (2004) A1999-A2006 【27】 G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xua, Z. Shao,“Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI,” J. Power Sources 162 (2006) 547-552 【28】 M. Mamlouk, K. Scott,“The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell,”Int. J. Hydrogen Energy 35 (2010) 784-793 【29】 J. J. Hwang, C. H. Chaob, W. Wu,“Thermal-fluid transports in a five-layer membrane-electrode assembly of a PEM fuel cell,” J. Power Sources 163 (2006) 450-459 【30】 Q. Ye and T. V. Nguyen,“Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions,” J. The Electrochemical Society, 154 (12) (2007) B1242-B1251 【31】 K. Karan,“Assessment of transport-limited catalyst utilization for engineering of ultra-low Pt loading polymer electrolyte fuel cell anode,” Electrochemistry Communications 9 (2007) 747-753
本研究分析一個二維、穩態高溫型質子交換膜燃料電池模型,以多重物理量有限元素分析軟體COMSOL Multiphysicsy作為分析工具,討論區域包括氣體擴散層、觸媒層及質子交換膜,氣體擴散層為多孔性的碳纖維導電材料,並以Agglomerate 模型描述觸媒層結構,使用PBI (polybenzimidazole)膜參雜磷酸作為質子交換膜,其中包括氣體在電解質及磷酸溶液中的擴散係數及溶解度的修正,針對物種的質量傳遞方程式、Darcy-Brinkman方程式、Maxwell-stefan方程式、電荷守恆方程式及能量方程式,探討在各種不同參數條件下,對電池性能的影響。
本文採用指叉型流道,以不同的溫度、磷酸參雜等級(doping level)、磷酸與水的重量百分比、有效反應面積、容積熱傳係數等因素,發現提高溫度、增加磷酸參雜等級為主要影響電池性能參數,此外,提高陽極及陰極之單位體積電流密度比將導致在高電流密度時嚴重之濃度極化。

Fuel cells operated at high temperature provide two main advantages as compared with their low-temperature counterparts: no water management problem and high carbon monoxide poison resistance at the anode. In this study, a two-dimensional model was developed to study the performance of fuel cell operated at temperature in the ranges of 120 to 190℃ using phosphoric acid doped polyberzimidazole (PBI) membrane. Coupled mass conservation, fluid flow, species transport, and charge conservation were solved numerically. An agglomerate model was used to describe the detail electrochemical reaction inside the catalyst layer. All the major transport phenomena were taken into account. Effects of the operation parameters such as temperature, reference current density, acid doping level, water content in acid solution, effective agglomerate surface area, agglomerate size, and volumetric heat transfer coefficient between solid and gaseous phases on the fuel cell performance in terms of current-density and current power output curves were examined in detail.

Based on the simulated results, it was found that better fuel cell performance can be obtained using high doping level of the acid solution, high effective agglomerate surface area and high anode reference current density. However, the concentration polarization on the cell output becomes more effective under these circumstances. The results also indicated that increasing the heat transfer between the solid and gas phases can improve cell output which suggested that the cell operated with high reactant flow rates would be preferred. In contrast to these parameters, water content in the acid solution and agglomerate size produce insignificant effect on the cell performance.
其他識別: U0005-1608201219370700
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.