Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2937
DC FieldValueLanguage
dc.contributor陳政雄zh_TW
dc.contributorJenq-Shyong Chenen_US
dc.contributor.author洪振維zh_TW
dc.contributor.authorHung, Cheng-Weien_US
dc.contributor.other機械工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-05T11:44:21Z-
dc.date.available2014-06-05T11:44:21Z-
dc.identifierU0005-2408201212262600en_US
dc.identifier.citation[1] 賴建宏,“智能化主軸的熱誤差建模與振動計研製”,國立中正大學碩士論文,2010 [2] 蕭蕙玲,“高速主軸之軸向動態誤差補償研究”,國立中興大學碩士論文,2011 [3] 華建鈞,“臥式綜合加工機熱誤差之量測與補償”,國立中正大學碩士論文,2008 [4] Jenq-Shyong Chen,Yii-Wen Hwang,“Centrifugal force induced dynamics of a motorized high-speed spindle,”,Int Adv Manuf Technol,No.30,pp.10-19,2006 [5] Jenq-Shyong ChenJ,J.Yuan, J.Ni,“Thermal Error Modelling for Real-Time Error Compensation,”,Int J Adv Manul Technol,No.12,pp.266-275,1997 [6] Jenq-Shyong Chen,Wei-Yao Hsu,“Characterizations and models for the thermal growth of a motorized high speed spindle,”,International Journal of Machine Tools Manufacture,N0.43,pp.1163-1170,2003 [7] Miao Enming*a , Niu Pengchenga , Fei Yetaia , Yan Yana,“Selecting Temperature-Sensitive Points and Modeling Thermal Errors of Machine Tools,” [8] K-D Kim,M-S Kim,S-C Chung, “Real-time compensatory control of thermal errors for high-speed machine tools”,Proceedings of the Institution of Mechanical Engineers,PartB:Journal of Engineering Manufacture,”,Vol.218,pp.913-924,2004 [9] Zhao Haitao*,Yang Jianguo,Shen Jinhua, “Simulation of thermal behavior of a CNC machine tool spindle,”,International Journal of Machine Tools Manufacture,No.47,pp.1003-1010,2007 [10] Kun-Fang Huang, Yu-Ling Juan, Chia-Hui Tang, Ching-Feng Chan, Tsair-Rong Chen, “Improvement of Thermal Growth Compensation for Motorized Spindle,” [11] 蔡明春、林淑萍、賀力行,“統計學:觀念、方法、應用”,前程企業管理有限公司,2003 [12] 陳耀茂,“統計分析Excel應用”,鼎茂圖書出版股份有限公司,2010 [13] 葛禎瑋,“工具機加工中熱誤差補償控制技術”,國立台灣大學碩士論文,1996 [14] 孟令人,“高精度工具機熱變形補償控制技術”,國立台灣大學碩士論文,1998 [15] 苗新元,“CNC立式綜合加工機之熱誤差補償技術”,國立中興大學碩士論文,1995 [16] 葉佐禮,“CNC工具機熱變位補償-實驗方法設計與資料處理”,國立中興大學碩士論文,2006 [17] 吳建朗,“CNC工具機熱變位補償控制技術”,國立中興大學碩士論文,2007 [18] 蔡坤妙,“電腦輔助工具機誤差量測與補償”,國立中正大學碩士論文,1994 [19] 王琨潔、吳政憲、林國銘、詹子琪,“電腦輔助工程與適應性模糊理論 在工具機結構與熱誤差改良之應用”,計量管理期刊,Vol.3,No.2,page 123-132,2006en_US
dc.identifier.urihttp://hdl.handle.net/11455/2937-
dc.description.abstract因工具機中主軸在運轉時會產生軸向誤差,嚴重影響產品之加工精度。其中以離心力大小及熱源引起之軸向誤差效應最為顯著,故本實驗之研究動機為探討離心力大小及熱源對於主軸之軸向誤差之影響。 在離心力方面,本研究利用高加減速測試實驗,在短時間內,熱源還未影響主軸軸向位移量情況下,探討離心力大小對於主軸軸向位移量之影響。利用渦電流位移計量測主軸軸向位移量,在主軸以直立式及橫躺式擺置方向實驗。分別在山峰式及階梯式測試條件下了解不同測試條件下,主軸軸向位移量之差別。 在熱源方面,本實驗利用長時間測試條件,探討在測試條件(一)至測試條件(五)中熱源對於主軸軸向位移量之影響。利用PT100溫度感測器量測主軸各主要發熱源之溫度,渦電流位移計量測主軸軸向位移量,並由主軸電控模組中獲得轉速訊號及電流訊號。將以上獲得之物理量利用相關係數分析及變異數分析篩選出最佳參數-環境溫度、主軸架溫度、馬達外殼溫度、馬達定子溫度。並使用自迴歸分析建立熱誤差預測模型(ARX model),將實際位移植扣除ARX預測值即為熱誤差建模後之輸出位移值。且利用前軸承溫度與轉速建立熱誤差預測模型,並利用馬達定子溫度與轉速建立靜態模型及一階動態模型,將各模型做比較。 由高加減速測試實驗得知,主軸在直立式擺置方向以山峰式及階梯式測試條實驗時,主軸之軸向位移量分別為4.5μm及4μm,主軸在橫躺式擺置方向以山峰式及階梯式測試條件實驗時,主軸之軸向位移量分別為4μm及3.5μm,由以上數據可得知,橫躺式擺置方向較直立式擺置方向下,主軸軸向位移量皆多出0.5μm。在長時間測試條件下,主軸軸向位移量在測試條件(一)至測試條件(五)中,實際位移量-ARX預測值在變動轉速下,約略可控制在±5μm內。尤其以利用模型4所建立之熱誤差預測模型在測試條件(五)中,更可以達到±2μm之範圍。 由本實驗可得知主軸在短時間加工狀態下,離心力所帶來的影響可達到4至4.5μm之範圍,在長時間加工狀態下,主軸之軸向最大位移量可高達20μm上下,經由熱誤差模型預測之結果可以預測至±5μm之範圍。zh_TW
dc.description.abstractWhen the spindle of the machine tool is running, it cause the axial error. It affect the machining accuracy seriously.The most significant effect of axial error is centrifugal force and heat source. Therefore, the motive of this experiment is exploring the effect of centrifugal force and heat source for error of the spindle. With regard to the centrifugal force,we use high acceleration and deceleration test in this study. In the short time, the heat source is not affecting the axial displacement of the spindle, we explore the centrifugal force from the effect of axial displacement of spindle. We use eddy-current displacement gage to measure the axial displacement of spindle in the vertical and lying direction. We find the difference of axial displacement of the spindle in the different test condition. With regard to the heat source, we use long time test condition in this study ,exploring the heat source effect of axial displacement of spindle in test conditions one to test conditions five. Apply the PT100 temperature sensor to measure the major temperature of spindle, eddy- current displacement gage measure the displacement of spindle and acquire the speed signal and current signal from the electrical control module. We use this data from the correlation analysis and ANOVA to get the fittest variable-Ambient temperature、spindle frame temperature、motor housing temperature、motor stator temperature. And contribute the ARX model from the autoregression analysis. Actual value deduct the ARX prediction value is the output value of the thermal error model. Use front bearing temperature and speed to contribute the thermal error prediction model and motor stator temperature and speed to establish the static model and first-order dynamic model to compare each other. From the high acceleration and deceleration test, the axial displacement of spindle is 4.5μm and 4μm from the mountain-style and ladder test experiment in the vertical direction. 4μm and 3.5μm in the lying direction. According to the data, we know the axial displacement of spindle more than 0.5μm when place the different direction. From test condition one to test condition five, the actual value deduct the ARX prediction value can control less than 0.5μm. Especially, use model four to establish the thermal error prediction model is the best at the test condition five, it can reach less 2μm range. So we can define the result from the short time machining time, the effect of displacement is 4 to 4.5μm from the centrifugal force. In the long machining condition ,the maximum axial displacement of spindle is over than 20μm, from the thermal error prediction model result ,the prediction range is 5μm.en_US
dc.description.tableofcontents摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究之傳承與創新處 7 第二章 內藏式高速主軸之軸向誤差量測實驗架構 10 2.1 實驗方法與流程 10 2.2 實驗儀器之選用 11 2.2.1 主軸系統 11 2.2.2 溫度量測單元 13 2.2.3 溫度擷取電路 15 2.2.4 位移量測單元 19 2.2.5 訊號擷取系統 24 2.3 溫度與位移量測設備之配置圖 26 2.4 熱誤差模型之數學方程式及預測原理 27 第三章 內藏式高速主軸軸向位移量量測與預測研究 35 3.1 短時間內高加減速之測試條件 35 3.1.1 山峰式測試條件之短時間高加減速實驗 36 3.1.2 階梯式測試條件之短時間高加減速實驗 38 3.1.3 雷射位移計檢測短時間高加減速實驗 39 3.2 PT100溫度感測器之線性校正 41 3.3 長時間運轉之測試條件 44 3.4 建模變數之選用-變異數分析(ANOVA) 49 3.5 熱誤差預測模型之建立 55 3.5.1 環境溫度、主軸架溫度、馬達外殼溫度、前軸承溫度為建模變數 55 3.5.2 前軸承溫度與轉速為建模變數 59 3.5.3 馬達定子溫度與轉速為建模變數-靜態模型 64 3.5.3 馬達定子溫度與轉速為建模變數-一階動態模型 68 3.6 長時間測試條件之預測結果與討論 73 3.7 長時間測試條件之特殊現象 80 第四章 結果與討論 83 4.1 結果與討論 83 4.2 未來展望 84 參考文獻 85 附錄一 相關係數矩陣分析表格 87 附錄二 變異數分析表格(觀察值個數60) 92 附錄三 變異數分析表格(觀察值個數120) 97zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408201212262600en_US
dc.subject軸向動態誤差zh_TW
dc.subjectaxial erroren_US
dc.subject離心力zh_TW
dc.subject相關係數分析zh_TW
dc.subject變異數分析zh_TW
dc.subject自迴歸模型zh_TW
dc.subjectcentrifugal forceen_US
dc.subjectcorrelation analysisen_US
dc.subjectANOVAen_US
dc.subjectthermal error prediction modelen_US
dc.title高速主軸之軸向動態誤差量測與建模研究zh_TW
dc.titleA study of dynamic axial error measurement and modeling of the high speed spindleen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.