Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29389
標題: 台農17號鳳梨甲基磺酸乙酯誘變育種之研究
Studies on Mutation Breeding of ''Tainung No.17'' Pineapple by Ethyl Methanesulfonate
作者: 陳家慧
Chen, Chia-Hui
關鍵字: 鳳梨;Ananas comosus;甲基磺酸乙酯;誘變育種;白化苗;ethyl methanesulfonate;mutation breeding;etiolated shoots
出版社: 園藝學系所
引用: 李文權。1972。烷類誘變劑 (Alkylating agents) 的作用及其誘變效果。科學農業 20: 229-242。 林學詩、蔡月夏。2005。結合組織培養與放射線照射誘導鳳梨變異之研究。中國園藝 51: 241-248。 高琦瑛。1976。烷類誘變劑對番茄誘變效果之研究。興大園藝 1: 11-14。 許華欣、黃麗春、劉邦基、鄭櫻慧、張有明、蕭吉雄。2001。金花石蒜化學誘變處理之研究。中華農業研究 50: 67-77。 陳敏祥。1991。果樹誘變與果樹育種。台灣果樹之生產及研究發展研討會專刊。台灣省農業試驗所嘉義分所。台灣:嘉義。p.167-182。 馬溯軒、王淑娥。1977。鳳梨之組織培養繁殖。中國園藝23: 107-113。 黃俊生、孔德春、黃峰。1995。EMS誘變波蘿癒傷組織選擇抗性突變體的研究。熱帶作物學報 16: 1-6。 農業統計年報。2011。行政院農業委員會。 溫英杰、張靜誼。2005。櫻花種原評估及其親緣關係之研究。台灣農業研究54:245-256。 劉邦基。1991。生物技術在果樹育種上之應用。台灣果樹之生產及研究發展研討會專刊。台灣省農業試驗所嘉義分所。台灣:嘉義。p.183-202。 謝順景、謝日鑫。1981。誘變育種學。初版。台北:國立編譯館。 Acram, T., P. Kumar, and P. Lakshmanan. 2002. In vitro plant breeding. CRC Press., London. 159pp. Agarwal, M., N. Shrivastava, and H. Padh. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27: 617-631. Aghion, D and G. Beauchesne. 1960. Utilization de la technique de culture sterile d''órganes pour des clones d''Ánanas. Fruits 15: 464-466. Ahloowalia, B. S.. 1997. Improvement of horticultural plants through in vitro culture and induced mutations. Acta Hort. 447: 545-549. Ahloowalia, B. S. and M. Maluszynski. 2001. Induced mutations – A new paradigm in plant breeding. Euphytica 118: 167–173. Akkaya, M. S., A. A. Bhagwat, and P. B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetic 132: 1131-1139. Akbar, M. A., B. K. Karmakar, and S. K. Roy. 2003. Callus induction and high-frequency plant regeneration of pineapple ( Ananas comosus (L.) Merr.). Plant Tiss. Cult. Biotech. 13: 109-116. Ali, D. J. and A. Batra. 2009. Molecular markers - an important and indispensable biotechnological tool for crop Improvement and conservation. In: Plant tissue culture and molecular markers, Kumar, A. and N. S. Shekhawat (eds), I. K. International Publishing House. pp. 505-518. Augustine V. J., K. Palanichamy, and E. A. Siddiq. 1975. Influence of pH on mutageneic specificity and efficiency of hydroxylamine, hydrazine and ethyl methanesulfonate in two rice type. Radiat. Bot. 15: 267-277. Barakat, M. N., R. S. A. Fattah, M. Badr, and M. G. El-Torky. 2010. In vitro mutagenesis and identification of new variants via RAPD markers for improving Chrysanthemum morifolium. Afr. J. Agric. Res. 5: 748-757. Barboza, S. B. S. C. and L. S. Caldas. 2001. Etiolation and regeneration in the in vitro multiplication of hybrid PE x SC-52 pineapple. Pesq. Agropec. Bras. 36: 417-423. Barkley, N. A., M. L. Roose, R. R. Krueger, and C. T. Federici. 2006. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor. Appl. Genet. 112: 1519-1531. Basu, S. K., S. N. Acharya, and J. E. Thomas. 2008. Genetic improvement of fenugreek (Trigonella foenum-graecum L.) through EMS induced mutation breeding for higher seed yield under western Canada prairie conditions. Euphytica 160: 249-258. Be, L. V. and P. C. Debergh. 2006. Potential low-cost micropropagation of pineapple (Ananas comosus). S. Afr. J. Bot. 72: 191-194. Bhagwat, B. and E. J. Duncan. 1998. Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci. Hortic. 73: 11-22 Bhate, B. H.. 2001. Chemically induced floral morphological mutations in two cultivars of Ipomoea purpurea (L.) Roth. Sci. Hortic. 88: 133-145. Bhatia, C. R. and K. R. Narayanan. 1965. Genetic effects of ethyl methanesulfonate in combination with copper and zinc ions on Arabidopsis Thaliana. Genetics 52: 577-581. Bhatia, P. and N. Ashwath. 2002. Development of rapid method for micropropagation of a new pineapple ( Ananas comosus (L.) Murr ) clone, ‘Yeppooon Gold’. Acta Hort. 575: 125-131. Bidabadi, S. S., M. Mahmood, S. Meon, Z. Wahab, and C. Ghobadi. 2011. Evaluation of in vitro water stress tolerance among EMS – induced variants of banana (Musa spp., AAA), using “morphological, physiological and molecular” traits. J. Crop Sci. Biotech. 14: 255-263. Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Caponetti, J. D., D. J. Gray, and R. N. Trigiano. 2005. History of plant tissue culture and cell culture. IN: Plant development and biotechnology, Trigiano, R. N. and D. J. Gray (eds.), CRC Press. pp.9-15. Carlier, J. D., A. Reis, M. F. Duval, G. C. D’Eeckenbrugge, and J. M. Leităo. 2004. Genetic maps of RAPD, AFLP and ISSR markers in Ananas comosus using the pseudo-testcross strategy. Plant Breed. 123: 186-192. Carvalho, A. C. P., M. V. M. Pinheiro, G. M. G. Dias, and J. P. S. Morais. 2009. In vitro multiplication of ornamental pineapple by shoot etiolation and regeneration. Hortic. Bras. 27: 103-108. Chakrabarti, S. K., D. Pattanayak , and P. S. Naik. 2001. Fingerprinting Indian potato cultivars by random amplified polymorphic DNA (RAPD) markers. Potato Res. 44: 375-387. Chen, Y. H. and C. C. Chen. 2010. RAPD marker assisted selection of EMS induced pineapple ( Ananas comosus (L.) Merr.) mutants. Pineapple News 17: 24-26. Chiba, N., K. Suwabe, T. Nunome, and M. Hirai. 2003. Development of microsatellite markers in melon(Cucumis melo L.) and their application to major cucurbit crops. Breed. Sci. 53: 21-27. Collard, B. C. Y. and D. J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557-572. Conduit, R. and S. P. Hubbell. 1991. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34:66–71. Coppens d''Eeckenbrugge, G., F. Leal, and M. F. Marie. 1997. Germplasm resource of pineapple. Hort. Rev. 21: 133-175. Diaz, A., M. Fergany, G. Formisano, P. Ziarsolo, J. Blanca, Z. Fei, J. E. Staub, J. E. Zalapa, H. E. Cuevas, G. Dace, M. Oliver, N. Boissot, C. Dogimont, M. Pitrat, R. Hofstede, P. van Koert, R. Harel-Beja, G. Tzuri, V. Portnoy, S. Cohen, A. Scaffer, N. Katzir, Y. Xu, H. Zhang, N. Fukino, S. Matsumoto, J. Garcia-Mas, and A. Monoforte. 2011. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Bio. 11: 111. Dewald, M. G., G. A. Moore, W. B. Sherman, and M. H. Evans. 1988.. Production of pineapple plants in vitro. Plant Cell Rep. 7: 535-537. Duval, M. F., G. S. C. Buso, F. R. Ferreira, J. L. Noyer, G. C. d’Eeckenbrugge, P. Hamon, and M. E. Ferreira. 2003. Relationships in Ananas and other related genera using chloroplast DNA restriction site variation. Genome. 46: 990-1004. Duval, M. F., J. L. Noyer, X. Perrier, G. C. d’Eeckenbrugge, and P. Hamon. 2001. Molecular diversity in pineapple assessed by RFLP markers. Theor. Appl. Genet. 102: 83-90. Escalona, M., J. C. Lorenzo, B. Daquinta, M. Fundora, Z. Borrot, C. G. Espinosa, E. Arias, and E. Aspiolea. 1999. New system for in-vitro propagation of pineapple (Ananas comosus (L.) Merr). Tropical Fruit New. 29: 3-5. Escalona, M., J. C. Lorenzo, B. González, M. Daquinta, J. L. González, Y. Desjardins, and C. G. Borroto. 1999. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18: 743-748. Esselman, E. J., L. Jianqiang, D. J. Crawford, J. L. Windus, and A. D. Wolfe. 1999. Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers. Mol. Eco. 8: 443-451. Fang, D. Q. and M. L. Roose. 1997. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95: 408-417. Firoozabady, E. and N. Gutterson. 2003. Cost-effective in vitro propagation methods for pineapple. Plant Cell Rep. 21: 844-850. Firoozabady, E. and Y. Moy. 2004. Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In Vitro Cell. Dev. Biol. –Plant 40: 67-74. Froese-Gertzen, E. E., C. F. Konzak, R. A. Nilan, and R. E. Heiner. 1964. The effect of Ethyl Methanesulfonate on the growth response, chromosome structure and mutation rate in barley. Radiat. Bot. 4: 61-69. Fulton, T. M., S. Grandillo, T. Beck-Bunn, E. Fridman, A. Frampton, J. Lopez, V. Petiard, J. Uhlig, D. Zamir, and S. D. Tanksley. 2000. Advanced backcross QTL analysis of a Lycopersicon esculentum X Lycopersicon parviflorum cross. Theor. Appl. Genet. 100: 1025-1042. Galpaz, N., O. Wang, N. Menda, D. Zamir, and J. Hirschberg. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 53: 717-730. García, G. P., M. I. Perez, and R. Benega. 2000. Analysis of somaclonal variation in pineapple. (Ananas comosus (L.) Merr) plants regenerated from callus in the field. Pineapple News 7: 10-1. George, E. F.. 2008. Chapter 1: Plant tissue culture procedure - Backgrand. In: Plant propagation by tissue culture, 3rd ed, George, E. F., M. A. Hall, and G. D. Klerk (eds), Springer. pp. 1-28. Hamad, A. M. and R. M. Taha. 2008. Effect of Benzylaminopurine (BAP) on in vitro proliferation and growth of pineapple ( Ananas comosus L. Merr ) cv. Smooth Cayenne. J. Applied Sci. 8: 4180-4185. Hamad, A. M. and R. M. Taha. 2008. The effect of different hormones and incubation periods on in vitro proliferation of pineapple (Ananas comosus L. Merr) cv. Smooth Cayenne shoot tip culture. Pak. J. Biol. Sci. 11: 386-391. Hamad, A. M. and R. M. Taha. 2009. Effect of explants density on the in vitro proliferation and growth of separated and cluster shoots of Smooth Cayenne pineapple( Ananas comosus L. Merr ). Asian J. Plant Sci. 8: 313-317. Hammerschlag, F. A. 1992. Somaclonal variation. IN: Biotechnology of perennial fruit crops, Hammerschlag, F. A and R. E. Litz (eds), C.A.B. International. pp. 33-55. Hammerschlag, F., D. Ritchie, D. Werner, G. Hashmil, L. Krusberg, R. Meyer, and R. Huettel. 1995. In vitro selection of disease resistance in fruit trees. Acta Hort. 392: 19-26. Heslot, H. 1961. Induction de mutation chez les plantes cultivées. Genetica Agraria. 13: 79-112. Helentjaris, T., M. Slocum, S. Wright, A. Schaefer, and J. Nienhuis. 1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72: 761-769. Herrera, R., V. Cares, M. J. Wilkinson, and P. D. S. Caligari. 2002. Characterisation of genetic variation between Vitis vinifera cultivars from central Chile using RAPD and Inter Simple Sequence Repeat markers. Euphytica 124: 139–145. Hirimburegama, K. and L. P. J. Wijesinghe. 1992. In vitro growth Ananas comosus L. Merr (pineapple) shoot apices of different media. Acta Hort. 319: 203-208. Hofmann, N. E., R. Raja, R. L. Nelson, and S. S. Korban. 2004. Mutagenesis of embryogenic cultures of soybean and detecting polymorphisms using RAPD markers. Biol. Plant. 48: 173-177. Hossain, Z., A. K. A. Mandal, S. K. Datta, and A. K. Biswas. 2006. Development of NaCl-tolerant strain in Chrysanthemum morifolium Ramat. through in vitro mutagenesis. Plant Biol. 8: 450-461. Ibitoye, D. O. and P. E. Akin-Idowu. 2010. Marker-assisted-selection (MAS): A fast track to increase genetic gain in horticultural crop breeding. Afr. J. Biotechnol. 9: 8889-8895. Ibrahimi, R., A., Hamzah, Z. J. Jam, M. Bahagia, and M. Joyo. 2009. Gamma irradiation-induced mutation for the improvement of Josapine pineapple against bacterial heart rot disease and improved fruit quality. In: Induced Plant Mutations in the Genomics Era, Q.Y. Shu(eds), Food and Agriculture Organization of the United Nations. pp. 276-278. Jabeen, N. and B. Mirza. 2004. Ethyl methane sulfonate induces morphological mutations in Capsicum annuum. Int. J. Agri. Biol. 6: 340-345. Jain, M.. 2001. Tissue culture-derived variation in crop improvement. Euphytica 118: 153–166. Jain, S. M.. 2010. Mutagenesis in crop improvement under the climate change. Rom. Biotech. Lett. 15: 88-106. Kerns, K. R. and J. l. Collins. 1947. Chimeras in pineapple. Colchicine-induced tetraploids and diploid-tetraploids in the cayenne variety. J. Hered. 38: 322-330. Kiss, E., J. Kiss, G. Gyulai, and L. E. Heszky. 1995. A novel method for rapid micropropagation of pineapple. HortScience 30: 127-129. Khan, S., A. Nasib, and B. A. Saled. 2004. Employment of in vitro technology for large scale multiplication of pineapples (Ananas comosos). Pak. J. Bot. 36: 611-615. Khawale, R. N. and S. K. Singh. 2006. Gamma rays in vitro mutagenesis and molecular marker-assisted selection of mutants in grapevine. Acta Hort. 725: 643-651. Khawale, R. N., V. Yerramilli , and S. K. Singh. 2007. Molecular marker-assisted selection of in vitro chemical mutagen-induced grapevine mutants. Curr. Sci. 92: 1056-1060. Kodym, A. and R. Afza. 2003. Physical and chemical mutagenesis. Methods Mol. Biol. 236: 189-204. Koller, B., A. Lehmann, J. M. McDermott, and C. Gessler. 1993. Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 85: 901-904. Latado, R. R., A. H. Adames, and A. T. Neto. 2004. In vitro mutation of chrysanthemum (Dendranthema grandiflora Tzvelev) with ethyl methanesulphonate (EMS) in immature floral pedicels. Plant Cell Tiss. Org. Cult. 77: 103 – 106. Lapade, A. G., A. M. S. Veluz, and I. S. Santos. 1995. Genetic improvement of the Queen variety of pineapple through induced mutation and in vitro culture techniques. In: Proceedings, induced mutations and molecular techniques for crop improvement. Internl Symposium, IAEA and Food Agriculture Organization of the Untited Nations, IAEA, Vienna. pp. 684-687. Lokko, Y. and H. Amoatey. 2001. Improvement of pineapple using in vitro and mutation breeding techniques. In: In vitro techniques for selection of radiation induced mutations adapted to adverse environmental conditions, IAEA, Vienna. pp. 25-29. Loyola-Vargas, V. M., C. De-la-Pena, R. M. Galaz-Avalos, and F. R. Quiroz-Figueroa. 2008. Plant tissue culture. In: Molecular biomethods handbook, 2nd ed, J. M. Walker and R. Rapley (eds.), Humana Press. pp.875-904. Luan, Y. S., J. Zhang, X. R. Gao, and L. J. An. 2007. Mutation induced by ethylmethanesulphonate (EMS), in vitro screening for salt tolerance and plant regeneration of sweet potato (Ipomoea batatas L.). Plant Cell Tiss. Organ. Cult. 88: 77-81. Mathews, V. H. and T. S. Rangan. 1979. Multiple plantlets in lateral bud and leaf explant in vitro culture of pineapple. Sci. Hortic. 11: 319-328. Mathews, V. H. and T. S. Rangan. 1981. Growth and regeneration of plantlets in callus cultures of pineapple. Sci. Hortic. 14: 227-234. Matsumoto, K. and H. Yamaguchi. 1984. Increased variation of NaCl-tolerance in adventitious embryoids of trifoliate orange using an in vitro technique. Brazil. J. Genet. 7: 73-81. Miri, S. M., A. Mousavi, M. R. Naghavi, M. Mirzaii, A. R. Talaei, and B. N. Khiabani. 2009. Analysis of induced mutants of salinity resistant banana (Musa acuminata cv. Dwarf Cavendish) using morphological and molecular markers. Iran J Biotechnol 7: 86–92. Mhatre, M. and P. S. Rao. 2002. Influence of physical and chemical mutagens of pineapple shoot culture. Pineapple News 9: 10-11. Moodie, M, R. P. Finch, and G. Marshall. 1997. Analysis of genetic variation in wild mustard (Sinapis arvensis) using molecular markers. Weed Sci. 45: 102-107. Moose, S. P. and R. H. Mumm. 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147: 969-977. Mujib, A.. 2005. Colchicine induced morphological variants in pineapple. Plant Tiss. Cult. Biotech. 15: 127-133. Mullis, K. and F. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth. Enzymol. 155: 335-350. Murphy, D. J.. 2007. Creating new genetic variation. In: Plant breeding and biotechnology : societal context and the future of agriculture. Cambridge. pp.23-35. Newton, A. C., T. R. Allnutt, A. C. M. Gillies, A. J. Lowe, and R. A. Ennos. 1999. Molecular phylogeography, intraspecific variation and conservation of tree species. Trend Ecol. Evol. 14: 140-145. Novak, F.J. , R. Afza, D. M. Van, and M. S. Omar. 1990. Mutation induction by gamma irradiation of in vitro-cultured shoot-tips of banana and plantain (Musa cvs). Trop. Agric. 67:21–28. Omar, M. S., F. J. Novak, and H. Brunner. 1989. In vitro of Ethylmethanesulfonate on banana shoot tips. Sci. Hortic. 40: 283-295. Owais, W. M. and A. Kleinhofs. 1988. Metabolic activation of the mutagen azide in biological systems. Mutat. Res 197: 313-323. Parasnis, A. S., V. S. Gupta, S. A. Tamhankar, and P. K. Ranjekar. 2000. A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol. Breed. 6: 337-344. Parry, M. A. J., P. J. Madgwick, C. Bayon, K. Tearall, A. Hernandez-Lopez, M. Baudo, M. Rakszegi, W. Hamada, A. Al-Yassin, H. Ouabbou, M. Labhilili, and A. Phillips. 2009. Mutation discovery for crop improvement. J. Exp. Bot. 60: 2817-2825. Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey, and A. Rafalski. 1996. The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238. Praxedes, S. C., A. F. Silva Jr., F. L. B. Figueiredo, M. L. Figueiredo, F. A. A. Câmara, and O. F. Oliveira. 2001. Estiolamento in vitro do abacaxizeiro Pérola em presença de ANA e AIA. Caatinga 14: 13-15. Predieri, S.. 2001. Mutation induction and tissue culture in improving fruits. Plant Cell Tiss. Organ. Cult. 64:185-210. Prevost, A. and M. J. Wilkinson. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: 107-112. Rai, M. K., R. K. Kalia, R. Singh, M. P. Gangola, and A. K. Dhawan. 2011. Developing stress tolerant plants through in vitro selection- an overview of the recent progress. Environ. Exp. Bot. 71: 89-98. Ramanna M. and T. Natarajan. 1966. Chromosome breakage induced by alkyl-alkane-sulfonates under different physical treatment condictions. Chromosoma 18: 44-59. Ronning, C. M., R. J. Schnell, and S. Gazit. 1995. Using random amplified polymorphic DNA (RAPD) markers to identify Annona cultivars. J. Amer. Soc. Hort. Sci. 120: 726-729. Ruangsuttapha, S., K. Eimert, M. B. Schröder, B. Silayoi, J. Denduangboripant, and K. Kanchanapoom . 2007. Molecular phylogeny of banana cultivars from Thailand based on HAT-RAPD markers. Genet. Res. Crop Evol. 54: 1565-1572. Saba, N. and B. Mirza. 2002. Ethyl methane sulfonate induced genetic variability in Lycopersicon esculentum. Int. J. Agri. Biol. 4: 89-92. Sanada, T. and E. Amano. 1998. Induced mutation in fruit trees. In: Somaclonal variation and induced mutations in crop improvement , Jain, S., D. S. Brar, and B. S. Ahloowalia (eds), Kluwer Academic Publishers. pp. 401-420. Schlötterer, C.. 2004. Opinion: The evolution of molecular markers - just a matter of fashion? Nat. Rev. Genet. 5: 63-69. Sega, G. A.. 1984. A review of the genetic effects of ethyl methanesulfonate. Mutat. Res. 134: 113-142. Semagn, K., A. Bjørnstad, and M. N. Ndjiondjop. 2006. An overview of molecular marker methods for plants. Afr. J. Biotechnol. 5: 2540-2568. Senapati, S. K. and G. R. Rout. 2011. In vitro mutagenesis in Rosa hybrida using oryzalin as a mutagen and screening of mutants by randomly amplified polymorphic DNA (RAPD) marker. Afr. J. Biotechnol. 10: 5705-5712. Shahin, A., P. Arens, S. van Heusden, and J. M. Tuyl. 2009. Conversion of Molecular Markers Linked to Fusarium and Virus Resistance in Asiatic Lily Hybrids. Acta Hort. 836: 131-136. Smith, M. K., H. L. Ko, G. M. Sanewski, and J. R. Botella. 2005. Ananas comosus Pineapple. In: Biotechnology of fruit and nut crops, Ltiz, R.E. (eds), CABI. pp.158-173. Soneji, J. R., P. S. Rao, and M. Mhatre. 2002. Somaclonal variration in micropropagation dormant axillary buds of pineapple (Ananas comosis L. Merr.) J. Hort. Sci. Biotech. 77: 28-32. Souza, B. M., J. E. Kraus, L. Endres, and H. Mercier. 2003. Relationships between endogenous hormonal levels and axillary bud development of Ananas comosus nodal segments. Plant Physiol. Bioch. 41: 733-739. Souza, F. V. D., A. M. M. E. Canto, A. S. Souza, M. A. Pereira, and C. Costa. 2010. Residual effect of growth regulators in etiolation and regeneration of in vitro pineapple plants. Rev. Bras. Frutic. 32: 612-617. Speckmann, G. J.. 1964. The mutagenic effect of treatment with EMS atdifferent temperatures in Pisum sativum. Euphytica 13: 337-344. Spiller, M., M. Linde, L. H. Oyant, C. J. Tsai, D. H. Byrne, M. J. M. Smulders, F. Foucher, and T. Debener. 2011. Towards a unified genetic map for diploid roses. Theor. Appl. Genet. 122: 489-500. Sripaoraya S., R. Marchant, J. B. Power, and M. R. Davey. 2003. Plant regeneration by somatic embryogenesis and organogenesis in commercial pineapple (Ananas Comosus L.). In Vitro Cell. Dev. Biol.– Plant 39: 450-454. Suprasanna, P., M. Sidha, and V. A. Bapat. 2009. Integrated approaches of mutagenesis and in vitro selection for crop improvement. In: Plant tissue culture and molecular markers , Kumar, A. and N. S. Shekhawat (eds), I K International Publishing House. pp.73-92. Tal, M.. 1994. In vitro selection foe salt tolerance in crop plants: theoretical and practical considerations. In Vitro Cell Dev. Biol, 30: 175-180. Teng, W. L. 1997. An alternative propagation method of Ananas through nodule culture. Plant Cell Rep. 16: 454-457. Tikunov, Y. M., L. I. Khrustaleva, and G. I. Karlov. 2003. Application of ISSR markers in the genus Lycopersicon. Euphytica 131: 71–80. van Harten, A. M. 1998. Mutation Breeding: Theory and Practical Applications. Cambridge Univ. Press. 353 pp. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. Wakasa, K.. 1979. Variation in the plants differentiated from the tissue culture of pineapple. Japan. J. Breed. 29: 13-22. Wang, Y. Q., L. J. Q. Luo, and Q.X. Deng. 2007. Morphology, POD isozyme and RAPD analyses of plants regenerated from EMS-treated shoot tips in ''Dawuxing'' loquat. Acta Hort. 750: 149-154. Waugh, R., D. J. Leader, N. McCallum, and D. Caldwell. 2006. Harvesting the potential of induced biological diversity. Trends Plant Sci. 11: 71-79. Webster, A. D. and T. R. Sparks. 1986. The influence of micropropagation and chemical mutagens on the growth and precocity of Cox’s Orange Pippin and Bramley’ seedling apple. Acta Hort. 180: 25-34. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1991. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. Yuan, X. J., J. S. Pan, R. Cai, Y. Guan, L. Z. Liu, W. W. Zhang, Z. Li, H. L. He, C. Zhang, L. T. Si, and L. H. Zhu. 2008. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber ( Cucumis sativus L.) using recombinant inbred lines. Euphytica 164: 473-491. Zhao, Y. H., Y. S. Guo, J. X. Fu, S. S. Huang, B. B. Lu, J. Zhou, G. B. Hu, and C. M. Liu. 2011. Molecular genetic map construction and QTL analysis for fruit maturation period in litchi. Biotechnol. Biotec. Wq. 25: 2315-2320. Zuraida, A. R., A. H. N. Shahnadz, A. Harteeni, S. Roowi, C. M. Z. C. Radziah, and S. Sreeramanan. 2011. A novel approach for rapid micropropagation of maspine pineapple (Ananas comosus L.) shoots using liquid shake culture system. Afr. J. Biotechnol. 10: 3859-3866.
摘要: 
本研究利用''台農17號''鳳梨組培苗為材料,探討以EMS誘變之最適條件。隨著處理濃度與處理時間增加,植株存活率隨之降低;以0.4% EMS處理12小時之植株存活率為97.5%,但處理時間增加至24小時存活率則降至25%,顯示處理濃度與時間兩者對植株存活率均有顯著影響。在調整EMS溶液pH值方面,在相同處理時間條件下,其中溶液pH值為6.0之處理組存活率為最高,且與未經誘變之對照組相比其遺傳相似係數均為最低。
  利用不同的培養基配方測試''台農17號''鳳梨組培苗之白化苗誘導率,結果顯示,種植於含有NAA之全量MSMO培養基之培植體經暗期培養8週後其白化苗誘導率皆顯著高於未添加NAA之對照組。而以 EMS溶液處理白化苗後其側芽萌芽率為依據,0.01% 1hr為接近LD50之處理條件。白化苗增殖系統方面,頂芽扦插苗之新生白化苗誘導率較側芽扦插苗需要較短時間即可達到最大新生白化苗誘導率;前者培養5週後白化苗誘導率為96.9%,後者培養11週後誘導率只有65.1%。頂芽扦插苗平均節位數為8.1節,而側芽扦插苗僅有6節。將白化苗莖段種於含有全量MSMO培養基並進行照光處理2週後側芽陸續萌發,並發育成一新生植株。此白化苗繼代增殖系統,可用於鳳梨誘變育種。
  經EMS處理之鳳梨組培苗培養於不同低溫環境下,隨著處理溫度降低,對照組及誘變處理組之植株存活率均隨之降低,EMS處理後植株先於室溫下恢復2週再進行低溫處理者之存活率較高,其中誘變後先於室溫恢復2週,再置於8℃低溫下2週之處理組其植株存活率為56.7%,顯著高於對照組之36.7%。以RAPD分子標誌分析經過不同低溫逆境及恢復時間搭配EMS誘變之M1V2後代,對照組與處理組之相似度係數介於0.953~0.985之間,顯示這些後代均與對照組植株有一定之歧異度。將處理組之存活植株之M1V2後代再次進行低溫逆境篩選處理,結果顯示,於第一次低溫處理後存活之植株後代有較高之低溫逆境耐受性。
  調查''台農17號''鳳梨EMS誘變株於田間生長情形,可觀察到許多具有畸形果實、葉刺及裔芽過度生長等異常生長之植株,顯示離體誘變可增加鳳梨植株生長情況之歧異度。進一步分析誘變株成熟果實之基本性狀與品質,除果重、冠芽數、冠芽重、可滴定酸及糖酸比之變異係數值較大外,果重、果長、果目數、果心及可溶性固形物等項目其變異係數均不高。

The effects of using EMS (ethyl methanesulphonate) as a mutagen on the survival rate of ''Tainung No.17'' pineapple plantlets cultured in vitro were examined. The survival rate of plantlets decreased when the EMS concentration and treatment duration increased; The survival rate in the treatment of 0.4% EMS 12hr was 97.5% which decreased to 25% in the treatment of 0.4% EMS 24hr. In the same concentration and duration treatments, adjusting the pH value of EMS solution to 6 had the highest survival rate of plantlets and had the lowest genetic similarity with the control.
The influence of different mediums on the induction rate of etiolated ''Tainung No.17'' pineapple shoots was tested. Plantlets cultured on the MSMO medium contained NAA had higher induction rate of etiolated shoots than those cultured on the MSMO medium without NAA after 8 weeks of culture in darkness. Base on the regeneration rate of lateral buds of the EMS treated etiolated plantlets, the treatment of 0.01% EMS 1hr was closed to the LD50. In the study of the proliferation of etiolated shoots, apical bud cuttings had an induction rate of 96.9% in 5 weeks of culture and lateral bud cutting had only 65.1% in 11 weeks of culture. The average number of nodes per shoot regenerated from apical bud cutting was 8.1, while lateral bud cutting had only 6 nodes per shoot. Segments of etiolated shoots were placed on MSMO medium and incubated in lightness. The lateral buds started to regenerate after 2 weeks of culture and then grew into new plantlets. This proliferation system of etiolated shoots could be utilized in the mutation breeding of pineapple.
''Tainung No.17'' pineapple plantlets were exposed to different low temperatures and the results showed that the survival rates of control plantlets and EMS treated plantlets decreased when the temperature was reduced. However, before exposure to low temperature, a recovery period of 2 weeks at room temperature after EMS treatment could increase the survival rate of plantlets. When the EMS treated plantlets were incubated at room temperature for 2 weeks before transfered to 8℃for another 2 weeks, the survival rate increased to 56.7%, compared with 36.7% in the control. The genetic similarities between the control plants and the EMS treated plants were 0.953~0.985. The M1V2 progenies from the plantlets survived after the first low temperature treatment had higher cold tolerance.
Growth of EMS treated ''Tainung No.17'' pineapple plants in field was also investigated. Some plants had morphological distinctions such as abnormal fruits, over proliferation of slips, and leaves with more spines. Analysis of the characteristics of the mature fruit of EMS treated ''Tainung No.17'' pineapple plants indicated that fruit weight, the number of slips, crown weight, titratable acid, and the ratio between total soluble solids and titratable acid had high coefficient of variance. Nevertheless, fruit weight, fruit length, the number of fruitlets, core diameter, and total soluble solids had low coefficient of variance.
URI: http://hdl.handle.net/11455/29389
其他識別: U0005-0108201222501000
Appears in Collections:園藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-7098032018-1.pdf4.44 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.