Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2938
DC FieldValueLanguage
dc.contributor陳政雄zh_TW
dc.contributorCheng-Hsiung Chenen_US
dc.contributor.author廖志鴻zh_TW
dc.contributor.authorHung, Liao-Chihen_US
dc.contributor.other機械工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-05T11:44:21Z-
dc.date.available2014-06-05T11:44:21Z-
dc.identifierU0005-2208201214075800en_US
dc.identifier.citation第五章 參考文獻 [1] 何俊龍,“高精度車床熱誤差及補償研究”,中興大學碩士論文,1998年。 [2] 廖華莘,“銑車複合加工機之銑削模組熱變位補償系統設計”,中興大學碩士論文, 2007年。 [3] 林進福,“工具機熱誤差的量測與補償”,碩士論文 ,台灣大學機械系 , 1993. [4] 華建鈞,"臥式綜合加工機熱誤差之量測與補償",國立中正大學碩士論文,2008年。 [5] 賴建宏,"智能化主軸的熱誤差建模與振動計研製",國立中正大學碩士論文,2010年。 [6] 苗新元,“CNC立式綜合加工機之熱誤差補償技術”,中國機械工程學會第十三屆學術研討會論文集 , pp281-290 , 1995年. [7] 林容靖,“車削中心熱誤差探討”,中國機械工程學會第十三屆學術研討會論文集 , pp314-321 , 1996年. [8] 蕭蕙玲,"高速主軸之軸向動態誤差補償研究",國立中正大學碩士論文,2011年。 [9] 孟令人,"高精度工具機熱變形補償控制系統",台灣大學機械系碩士論文,1998年。 [10] 魏維俊,"精密車床主軸頭之最佳化設計",國立中興大學碩士論文,1997年。 [11] 廖子恩,"滾珠螺桿溫升熱變位量測之研究",中正大學機械系碩士論文,1999年。 [12] T. Sata , Y. Takeuchi , and N.Okubo, "Control of the Thermal Deformation of a Machine Tool,"Proc, 16th Int.MTDR Conference,pp.203-208,1975. [13] J.S.Chen, and G.Chion, "Quick Testing and Modeling of Thermally Induced Errors of CNC Machine Tools,"Machine Tools and Manufacture, vol. 35, no.7, pp.1063-1074,1995. [14] K.Yokoyama , R. Lchimiya,and K.Lwata,Moriwaki, "Analysis of Dimensional Error and Improvement of Honing Accuracy by In-Process Compensation of Thermal and Elastic Deformations,"Int.J.Japan Soc.Prec.Eng,vol.26,no.3,1992. [15] 徐聖凱,"工具機進給系統對結構熱變形影響之基礎研究",中興大學碩士論文,2008年。 [16] Bernd Bossmanns, and Jay F Tu. "A Thermal Model for High Speed Motorized Spindles"Machine Tools and Manufacture, 1999, vol. 39, pp.1345-1366. [17] Tae-Jo,Pyung Hwang, and Hee-Sool, "On the Characteristics of the Thermal Behavior of a High Speed Machine Tool Spindle", Proceeding of the 6th International symposium on Transport Phenomena and Dynamics of Rotating Machinery, Vol.2, 1996. [18] 王義傑,"工具機主軸與滾珠導螺桿之熱變位模擬分析",雲林科技大學碩士論文,2008年。 [19] Zhao Haita,Yang Jianguo and Shen Jinhua"Simulation of thermal behavior of a CNC machine tool spindle",Internation Journal of Machine Tools&Manufacture 47 (2007) 1003-1010. [20] 何燾羽,“精密磨床熱變形分析與預測”,中原大學碩士論文,2005年。 [21] 簡嘉宏,“內藏式馬達高速主軸之熱傳分析”,成功大學碩士論文,2002年。 [22] 洪梓育,“龍門定位平台與線性馬達間之熱溫昇與熱應力分析研究”,中正大學碩士論文,2007年。 [23] 夏宏誌,“以熱阻模型與有限元素法分析線性同步馬達之熱傳行為”,中興大學碩士論文,2009年。 [24] ANSYS使用手冊,虎門科技股份有限公司,1998年。 [25] 鄭昇芳,"工具機之溫昇熱變形",1985年。 [26] 吳建璜,"工具機主軸熱變位量測與應用",三聯科技股份有限公司。 [27] NACHI滾動軸承技術手冊。 [28] Harris,T.A. "Rolling bearing anslysis" Third Ed.John Wiley & Sons , New York. 1991.en_US
dc.identifier.urihttp://hdl.handle.net/11455/2938-
dc.description.abstract本論文研究方向為因CNC車床工具機在整機架構為不對稱性,難以架設線上熱誤差補償技術。而影響工具機加工精度的主要來源為主軸結構的熱變形誤差。如能從設計主軸結構時初期搭配有限元素分析軟體就可以預先模擬結構整體的變形量,進而修改設計配置軸承熱源與主軸結構幾何關係,有效消除或降低熱誤差的發生。因此本研究先行架設熱誤差實驗設備在主軸結構本體設置14個溫度感測器在不同實驗測試的條件下量取主軸結構鑄件因主軸軸承運轉發熱所產生的熱溫昇值及運用渦電流位移量取因發熱所產生的結構熱誤差值與模擬值進行比對。熱的來源是出自軸承的運轉摩擦,發熱量的大小由軸承廠商手冊所提供的公式計算,再運用ANSYS模擬分析軟體,並運用試誤學習調整其邊界條件軸承發熱量來模擬因軸承運轉發熱對於主軸結構所產生的熱行為特性進行分析。 分析結果顯示熱溫昇模擬部份;在定轉速1200rpm及1800rpm的實際實驗條件下其溫昇值可模擬擬合誤差值在5℃內。在熱變形模擬部份;其碳鋼試棒X軸與Y軸方向位移量模擬分析與實驗結果比對有很大的差距。僅有Z軸方向熱伸長有預測20%誤差值。並且運用ARX模型進行主軸結構熱誤差建模,在主軸結構的熱變形最大可達170微米左右其預測達可到±5微米。提出ANSYS主軸結構溫昇熱變形運用(auto regressive exogenous(ARX))熱誤差模型預測Z軸軸向熱誤差其預測值約±20微米。其主要目的為往後進行初期設計結構時,將模型建立後,在運用有限元素分析軟體進行模擬得到溫度分佈及位移量,再利用熱誤差補償模型ARX進行熱誤差預測,此方法可節省實際架設實驗設備的時間成本。因此在定性研究方法運用有限元素分析軟體進行熱誤差預測,得到定量精確數值尚需長時間進行模擬分析與熱誤差實驗相互比對找出模擬設定經驗法則。zh_TW
dc.description.abstractIn this research CNC lathe machine tool machine architecture for the asymmetry,it is difficult to set up online thermal error compensation technology.affent the machineing accuracy of machine tools,the main source of erroe for the thermal deformation of the spindle structure.Early from the design of the spindle with finite element analysis software can sinmulate the deformation of the structure of the overall pre and thus to modify the design configuration bearing the heat soure and the spindle structure of geometric relationships and to effectively eliminate or reduce the occurrence of thermal error.Thermal error experiment equipment of this study is first erected in the spindle structure body is set to 14 temperature sensors in the different experimental conditions to measure the spindle structure of the castion operation of the heat generated by the thermal temperature rise due to the spindle bearings and the use of eddy current displacement takethe structure of the thermal error due to fever and simulated values for comparison.The source of heat is from the operation of the bearing friction formula to calculate the size of the heat provided by the bearing manufacturers manual using ANSYS simulation software, and use trial and error learning to adjust its boundary conditions bearing haet to sinmulate the bearing due to running fever for the thermal behavior of the spindle structure. The analysis showed that the thermal temperature rise of the simulation part;its temperature rise can simulate the actual experimental conditions fixed speed of 1200rpm and 1800rpm fitting error within 5℃.In the thermal deformation for the simulation part;its carbon steel test bars X-axis and Y-axis direction displacement amount of simulation and experimental results have a big gap. Only a Z-axis thermal expansion forecast a 20% error.And the use of the ARX model for spindle structure thermal error modeling and prediction about the thermal deformation of the spindle structure up to 170 micron up to ±5 microns.Proposed the ANSYS spindle structure of themrmal expansion drformation the use of thermal error model predictions (auto regressive exogenous(ARX))Z axis axial thermal error of the predictive value of about ±20 microns.The main purpose finite element analysis software to simulate the temperature distribution and displacement,reuse thermal error compensation model ARX thermal error prediction,this method can save the actual erection of experiments back to the initial design of the struceture, the modelthe time cost of he equipment. Therefore,the use of finite element anslysis software in qualitative research methods for the therma error prediction quantitatively accurate values will take a long time simulation analysis and thermal error experiment with each other than the set rule of thumb to find out the simulation.en_US
dc.description.tableofcontents目錄 摘要 i Abstract ii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1. 研究動機與目的 1 1.2. 研究方法 2 1.3. 車床熱誤差分類 3 1.2.1 車削中心熱誤差 3 1.2.2 車削中心伺服軸之熱誤差 4 1.4. 文獻回顧 7 1.4.1. 工具機熱誤差補償技術探討 7 1.4.2. 以有限元素法文獻探討 8 1.4.3. 研究論文架構 10 第二章 主軸結構熱溫昇模擬與實驗設備 11 2.1 ANSYS簡介與熱傳方式簡介 11 2.1.1 分析模擬軟體-ANSYS簡介 11 2.1.2 熱傳遞的方式 11 2.1.3 熱變形的形態 13 2.2 ANSYS溫昇模擬先前實驗流程與設備 15 2.3 儀器之選用 16 2.3.1 主軸結構 16 2.3.2 溫度感測器之選用 16 2.3.3 渦電流位移計原理及選用規格 18 2.3.4 渦電流感測器之夾治具製作 21 2.3.5 信號擷取系統 22 2.3.6 主軸結構溫度量測架設 23 2.4 主軸結構熱行為實驗測試 24 2.4.1 實驗測試條件 25 2.4.2 實驗溫度點討論 30 2.5 主軸結構熱溫昇分析流程 30 2.5.1 主軸結構模型分析流程 30 2.5.2 軸承負荷計算 32 2.5.3 軸承發熱量計算 36 2.5.4 實例計算 37 2.5.5 主軸結構模型建構 43 2.5.6 主軸結構熱溫升模擬分析 43 2.6 主軸結構模擬分析與實驗結果比對 52 2.6.1 主軸結構熱溫昇與實驗比對小結 57 第三章 主軸結構熱變形預測與實驗比對 59 3.1 主軸結構熱變位模擬分析 59 3.2 熱誤差預測方法 64 3.3 熱溫升誤差建模與預測 67 3.3.1 熱誤差模型建立(ARX) 67 3.3.2 實驗結果小結 80 3.3.3 主軸結構試棒熱變位與實驗結果比對 82 3.3.4 ANSYS模擬碳鋼試棒分析值與實驗值量測基準位置討論 92 3.3.5 ANSYS模擬數量運用ARX建模預測 93 3.3.6 主軸結構試棒熱變位與實驗結果比對小結 98 第四章 結綸與未來研究方向 99 4.1 結綸 99 4.2 未來研究方向 100 第五章 參考文獻 101 附錄一 計算M1所需的各項係數值 103 附錄二 測試條件建模與預測 105zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201214075800en_US
dc.subjectCNC車床zh_TW
dc.subjectCNC Lathesen_US
dc.subject熱誤差zh_TW
dc.subject有限元素分析zh_TW
dc.subjectThermal erroren_US
dc.subjectFinite Element Methoden_US
dc.title高速車床主軸結構熱行為預測與分析zh_TW
dc.titlePrediction and Analysis of the thermal behavior for high-speed lathe Spindle structureen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:機械工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.