Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29424
標題: 素心蘭之生育習性與產期調節
The Growth Habit and Forcing Culture of Cymbidium ensifolium
作者: 陳俊源
Chen, Jyun-Yuan
關鍵字: 素心蘭(Cymbidium ensifolium);Cymbidium ensifolium;生育習性;溫度;BA(N6-Benzyladenine);Growth habits;Temperature;BA(N6-Benzyladenine)
出版社: 園藝學系所
引用: 引用文獻 小西國義、今西英雄、五井正憲. 1988. 花卉的開花調節. 養賢堂. 312p. 王明吉. 1991蝴蝶蘭幼年性、光度對成長與開花之影響及葉片酸度變化. 國立台灣大學園藝學研究所碩士論文. 台北. 94p. 王恆隆、鍾振德、葉開溫. 2003. 文心蘭花器發育過程中當代假球莖內碳水化合物與自由態氨基酸的變化. 中華農學會報. 4: 476-488. 王郁棻. 2006. 乙烯、溫度及光度對秋石斛蘭盆花產後品質之影響. 國立台灣大學園藝學研究所碩士論文. 台北. 91p. 李嘉慧. 1990. 蝴蝶蘭型態解剖及光度、花芽發育對碳水化合物含量之影響. 國立台灣大學園藝學研究所碩士論文. 台北. 78p. 李志仁. 1991. 報歲蘭輿素心蘭之開花輿種子無菌發芽之研究. 國立台灣大學園藝學研究所碩士論文. 台北. 158p. 李哖、王明吉. 1997. 白花蝴蝶蘭由幼年期到成熟相之礦物成分和碳水化合物之變化. 中國園藝 43:295-305. 94p 李孟惠. 1998. 溫度、光度及肥料濃度對文心蘭花序發育之影響. 國立台灣大學園藝研究所碩士論文. 台北. 88p. 李鵬民、高輝遠、鄒琪、王滔、劉永. 2005. 5種國蘭(Cymbidium)的光合特性. 園藝學報 32: 151-154. 李振堅、王雁、彭鎮華、王彩雲、繆崑、于耀. 2009. 6-BA、GA3調控春石斛花芽分化的效應. 亞熱帶植物科學 38: 15-18. 吳應祥. 1991. 中國蘭花. 中國林業出版社. 北京. 141p. 吳根松、傅玉蘭、黃正隆、曹勇. 2008. 不同氮磷鉀配比對大花蕙蘭營養生長的影響. 安徽農學通報: 62-64. 吳根良、孫瑤、沈國正、何勇、朱祝軍. 2009. 不同光照條件下大花蕙蘭淨光合速率和葉綠素螢光參數的日變化. 浙江大學學報 35: 607-612. 利幸貞. 1992. 一、素心蘭與四季蘭之無菌播種 二、溫度對四季蘭開花之研究. 國立台灣大學園藝學研究所碩士論文. 台北. 53p. 林讚標. 1988. 蕙蘭屬. 台灣蘭科植物Ⅱ: 101-108. 南天書局. 台北. 1143p. 林盈充. 1998. 氮肥型態比例與植物生長激素對鐵骨蘭生長影響之研究. 國立中興大學土壤環境科學研究所碩士論文. 台中. 75p. 林純瑛. 2000. 生長調節劑對盆栽秋石斛蘭矮化及開花的影響. 花蓮區研究彙報 18:33-42. 林育如. 2002. 蝴蝶蘭腋芽發育與開花調控關係之研究. 國立台灣大學園藝學研究所博士論文. 台北. 192p. 林淑婷. 2009. 玉花四季蘭無菌播種與根莖繁殖. 國立中興大學園藝學研究所碩士論文. 台中. 74p. 侯德瑩. 2007. 磷肥對文心蘭之生長與切花品質的影響. 國立中興大學園藝學研究所碩士論文. 台中. 114p. 洪惠娟、郭珮琪、魏芳明. 2010. 台灣國蘭產業及外銷作業調查. 台中區農業改良場研究彙報109: 29-40. 高景輝. 2006.植物荷爾蒙生理. 華香園出版社. 台北. 556p. 徐懷恩. 1997. 不同光照、氮源肥料及花梗修剪對文心蘭開花之影響. 國立中興大學園藝學研究所碩士論文. 台中. 131p. 黃泮宮. 1982. Cymbidium之花期調節. 台灣省政府農林廳種苗改良場試驗報告. 台中. 張維倩. 2009. 生長調節劑與除花梗對文心蘭生育及開花之影響. 國立台灣大學園藝學研究所碩士論文. 台北. 92p. 張正. 2010. 國蘭的分類、型態與品系. p.12-24. 刊於:洪惠娟等編著. 國蘭生產作業手冊. 台中區農業改良場編印. 彰化. 135p. 陳裕星、張莉欣. 2004. 台灣原生蕙蘭屬植物遺傳資源之分類與生育特性。台中區農業改良場研究彙報82:51-60. 陳筱薇. 2007. 環境因子對文心蘭光合作用之影響. 國立台灣大學園藝學研究所碩士論文. 台北. 89p. 游婷媛. 2008. 暗期中斷處理與磷肥濃度對文心蘭生長與開花之影響. 國立中興大學園藝學研究所碩士論文. 台中. 84p. 陽選清、文澤會. 2010. 多效唑對大花蕙蘭花芽產量的影響研究. 農技服務 27: 348. 廖曼利. 1995. 壹、光度及肥料濃度對報歲蘭營養生長與生殖生長的影響 貳、培養基成分、光線及溫度對報歲蘭根莖生長與分化的影響. 國立台灣大學園藝學研究所碩士論文. 台北. 84p. 潘瑞熾、羅蘊秀. 1994. PP333對墨蘭生長發育和葉片結構的影響. 園藝學報 21: 269-272. 潘瑞熾. 1997. 墨蘭礦質營養研究. 華南師範大學學報: 47-50. 劉國、王四清. 2005. 大花蕙蘭(Cymbidium hybridum)的研究動向. 園藝學報32: 748-752. 劉群龍、焦宇飛、吳國良. 2008. 溫度對五個大花蕙蘭品種萌發和生長的影響. 西南農業學報 21: 1702-1704. 蔡宜峰、蔡東明、洪惠娟. 2010. 田間管理作業. p.55-65. 刊於:洪惠娟等編著. 國蘭生產作業手冊. 台中區農業改良場編印. 彰化. 135p. 錢樺、劉燕、俞繼英、范文峰、張瑛. 2007. 不同激素對2個春石斛品種開花的影響. 林業科學 43: 148-150. 行政院農業委員會農產貿易統計查詢系統. http://agrapp.coa.gov.tw/TS2/TS2Jsp/Index.jsp 關稅總局統計資料庫查詢系統. http://www.customs.gov.tw/StatisticWeb/IESearch.aspx?Type=Edit&Code=0602909145,0602909144,0602909915 Barman, D., K. Rajni, and S. K. Naik. 2008. Production of Cymbidium Soulhunt-6 by manipulating cultural practices under partially modified greenhouse. Indian Journal of Horticulture. Blanchard, M. G. and E. S. Runkle. 2006. Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J. Exp. Bot. 57 : 4043–4049. Blanchard, M. G. and E. S. Runkle. 2008a. Temperature and pseudobulb size influence flowering of Odontioda orchids. Hort. Sci. 43:1404–1409. Blanchard, M. G. and E. S. Runkle. 2008b. Benzyladenine promotes flowering in Doritaenopsis and Phalaenopsis orchids. J Plant Growth Regul. 27:141–150. Campos K. O. and G. B. Kerbauy. 2004. Thermoperiodic effect on flowering and endogenous hormonal status in Dendrobium (Orchidaceae). J. Plant Physiol. 161: 1385-1387. Casamajor, R. 1955. Cymbidium research at Earhart laboratory. Cymbidium Soc. News. 10: 14-16. Chang, C. and W. C. Chang. 2000. Effect of thidiazuron on bud development of Cymbidium sinense Willd in vitro. Plant Growth Regul. 30: 171-175. Chang, C. and W. C. Chang. 2003. Cytokinins promotion of flowering in Cymbidium ensifolium var. misericors in vitro. Plant Growth Regul. 39: 217–221. Chansean, M., A. Nakano, and S. Ichihashi. 2006. Control of spiking in Phalaenopsis by application of mineral salts and plant growth regulators. Aichi Univ. Edu. 55: 39-44. Chen, W. S., H. Y. Liu, Z. H. Liu, L. Yang, and E. H. Chen. 1994. Gibberellin and temperature influence carbohydrate content and flowering Phalaenopsis. Physiol. Plant. 90: 391-395. Chen, W. S., H. W. Chang, W. H. Chen, and Y. S. Lin. 1997. Gibberellic acid and cytokinin affect Phalaenopsis flower morphology at high temperature. Hort. Sci. 32: 1069-1073. Chen, W. H., Y.C. Tseng, Y. C. Liu, C. M. Chuo, P. T. Chen, K. M. Tseng, Y. C. Yeh, M. J. Ger, and H. L. Wang. 2008. Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite. Plant Cell Rep. 27: 1667–1675. Dogane, Y. and T. Ando. 1990. An estimation of carbon evolution during flowering and capsule development in a Laeliocattleya orchid. Sci. Hortic. 42:339-349. Du Puy, D. and P. Cribb. 2007. The classification of Cymbidium. pp.263-276. In The genus Cymbidium. Timber Press, Oregon. Fenwell, T. 1951. Food for thought on orchid feeding. Amer. Orchid Soc. Bull. 20: 455-459. Ferreira W. d. M., G. B. Kerbauy, J. E. Kraus, R Pescador, and R. M. Suzuki. 2006. Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium. J. Plant Physiol. 163:1126-1134. Goh, C. J. and H. C. Seetoh. 1973. Apical control of flowering in an orchid hybrid Aranda Deborah. Ann. Bot. 37:113-119. Goh, C. J. and A. L. Yang. 1978. Effects of growth regulators and decapitation on flowering of Dendrobium orchid hybrids. Plant science letters 12: 287-292. Goh, C. J. 1977. Regulation of floral initiation and development in an orchid hybrid Aranda Deborah. Ann. Bot. 41: 763-769. Goh, C. J. 1979. Hormonal regulation of flowering in a sympodial orchid hybrid Dendrobium Louisae. 1979. New Phytol. 82:375-380. Hew, C. S. and J. W. H. Yong. 2007. The physiology of tropical orchids in relation to the industry. World Scientific Publishing Co. Pte. Ltd. Singapore. Kostenyuk, I., B.J. Oh, and I.S. So. 1999. Induction of early flowering in Cymbidium niveo-marginatum Mak in vitro. Plant Cell Rep. 19 : 1–5. Kubota, S., J. Yamamoto, Y. Takazawa, H. Sakasai, K. Watanabe, K. Yoneda, and N. Matsui. 2006. Effects of light intensity and temperature on growth, flowering and single-leaf CO2 assimilation in Odontioda. J. Japan. Hort. Sci. 74: 330-336. Lee, N. and C. Z. Lee. 1993. Growth and flowering of Cymbidium ensifolium var. misericors as influence by temperature. Acta Hort. 337: 123-130. Lee, H. C., Y. J. Chen, A. H. Markhart, and T. Y. Lin. 2007. Temperature effects on systemic endoreduplication in orchid during flora development. Plant Sci. 172: 588-595. Li, J., X. Zhao, and S. Matsui. 2001. Effect of temperatures on rate of nutrient concentrations in pseudobulbs and leaves and on flowering in a Cattleya and Cymbidium hybrid. J. SHITA. 13: 85-90. Lopez, R. G. and E. S. Runkle. 2004. The effect of temperature on leaf and flower development and flower longevity of Zygopetalum Redvale ‘Fire Kiss’ orchid. Hort. Sci. 39:1630-1634. Lopez, R. G. and E. S. Runkle. 2005. Environmental physiology of growth and flowering of orchids. Hort. Sci. 40:1969-1973. Lopez, R. G. and E. S. Runkle. 2006. Temperature and photoperiod regulate flowering of potted Miltoniopsis orchids. Hort. Sci. 41:593–597. Lopez, R. G. and E. S. Runkle. 2008. Effect of temperature and pseudobulb maturity on flowering of the orchid Miltoniopsis Augres ‘Trinity’. Acta Hort.766: 273-278. Matsumoto, T. K.. 2006. Gibberellic acid and benzyladenine promote early flowering and vegetative growth of Miltoniopsis orchid hybrids. Hort. Sci. 41: 131–135. Menhenett, R. and P. F. Wareing.1977. Effects of photoperiod and temperature on the growth and cytokinin content of two populations of Dactylis glomerata(cocksfoot). New Phytol. 78:17-25. Miguel, T. P., W. S. Sakai, and J. Fang. 2008. Gibberellic acid induced flowering of Paphiopedilum (Macabre x glanduliferum). Acta Hort. 766: 279-282. Newton, L. A.. 2008. Effects of high temperature and plant growth regulators on vegetative growth and flowering of potted orchids. MS Thesis, Michigan State University. 159p. Newton, L. A. and E. S. Runkle. 2009. High-temperature inhibition of flowering of Phalaenopsis and Doritaenopsis orchids. Hort. Sci. 44: 1271–1276. Ohno, H. and S. Kako. 1991. Roles of floral organs and phytohormones in flower stalk elongation of Cymbidium (Orchidaceae). J. Japan Soc. Hort. Sci. 60: 159-165. Poole, H. A., and J. G. Seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 103:485-488. Powell, C. L., K. I. Caldwell, R. A. Littler, and I. Warrington. 1988. Effect of temperature regime and nitrogen fertilizer level on vegetative and reproductive bud development in Cymbidium orchids. J. Amer. Soc. Hort. Sci. 113: 552-556. Rotor, G. B.. 1952. Daylength and temperature in relation to growth and flowering of orchids. Cornell Univ. Agr. Exp. Bull. 85: 3-45. Sakanishi, Y., H. Imanishi, and G. Ishida. 1980. Effect of temperature on growth and flowering of Phalaenopsis amabilis. Bull. Univ. Osaka Pref., Ser. B., Vol. 32. Sheehan, T. J. 1983. Recent advances in botany, propagation, and physiology of orchids. Horti. Rev. 5:279-315. Shunji, K. and H. Ohno. 1979. The growth and flowering physiology of Cymbidium plants. 9th World’s Orchid Conference. pp. 233-241. Sim G. E., C. S. Loh, and C. J. Goh. 2007. High frequency early in vitro flowering of Dendrobium Madame Thong-In (Orchidaceae). Plant Cell Rep. 26: 383-393. Sim G. E., C. J. Goh, and C. S. Loh. 2008. Induction of in vitro flowering in Dendrobium Madame Thong-In (Orchidaceae) seedlings is associated with increase in endogenous N6-(D2-isopentenyl)-adenine (iP) and N6-(D2- isopentenyl)-adenosine (iPA) levels. Plant Cell Rep. 27:1281–1289. Su, W. R., W. S. Chen, K. Masaji, L. N. Mander, L. S. Hung, W. H. Chen, W. H.Fu, and K. L. Huang. 2001. Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Plant Physiol. Biochem. 39: 45–50. Tanaka, M., S. Yamada, and M. Goi. 1986. Morphological observation on vegetative growth and flower bud formation in Oncidium Boissiense. Sci. Horti. 28: 133-146. Tran Thanh Van M. 1974. Growth and flowering of Cymbidium buds normally inhibited by apical dominance. J. Amer. Soc. hort. Sci. 99. 450-3. Tsai, W. T., Y. T. Wang, and H. L. Lin. 2008. Alternating temperature affects spiking of a hybrid Phalaenopsis. Acta Hort. 766:307-313. Vu, N. H., P. H. Anh, and D. T. Nhut. 2006. The role of sucrose and different cytokinins in the in vitro floral morphogenesis of rose (hybrid tea) cv. ‘First Prize’. Plant Cell Tiss Organ Cult. 87:315–320. Wang, Y. T. and T. Y. Hsu. 1994. Flowering and growth of Phalaenopsis orchids following growth retardant applications. Hort. Sci. 29: 285–288. Wang, Y. T. and L. L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. Hort. Sci. 29: 269 - 271. Wang, Y. T.. 2000. Impact of high phosphorus fertilizer and timing of termination of fertilization on flowering of hybrid moth orchid. Hort. Sci. 35: 60-62. Wang, Y.T.. 2007. Potassium nutrition affects Phalaenopsis growth and flowering. Hort. Sci. 42:1563–1567 Wang, Y. T.. 2008. High NO3-N to NH4-N ratios promote growth and flowering of a hybrid Phalaenopsis grown in two root substrates. Hort. Sci. 43: 350–353. Wang, C. Y., C. Y. Chiou, H. L. Wang, R. Krishnamurthy, S. Venkatagiri, J. Tan, and K. W. Yeh. 2008. Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227: 1063–1077. Yap, Y. M., C. S. Loh, and B. L. Ong. 2008. Regulation of flower development in Dendrobium crumenatum by changes in carbohydrate contents, water status and cell wall metabolism. Scientia Horticulturae 119: 59–66. Yen, C. Y. T., T. W. Starman, Y. T. Wang, and G. Niu. 2008. Effects of cooling temperature and duration on flowering of the Nobile Dendrobium Orchid. Hort. Sci. 43: 1765–1769. Yew Ng, C. K. and C. S. Hew. 2000. Orchid pseudobulbs -`false'' bulbs with a genuine importance in orchid growth and survival! Scientia Horticulturae 83: 165-172. Yong, J. W. H. and C. S. Hew. 1995.The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. Int. J. Plant Sci. 156: 450-459.
摘要: 
摘要
本研究調查鐵骨素心蘭(Cymbidium ensifolium ‘Iron bone’)與天鵝素心蘭(Cymbidium ensifolium ‘Swan’)週年營養芽及花芽萌發習性,兩素心蘭品種每個月份皆形成營養芽,但萌芽的高峰期出現在2-5月及8-9月;花芽形成期分佈在5-11月份間,高峰期介於9-10月間。鐵骨素心蘭營養芽萌發下一代營養芽所需時間為150-200天,天鵝素心蘭則為200-250天,兩素心蘭之春夏新芽發育到可開花的時間較冬季新芽短。各月份新芽萌發營養芽率,鐵骨素心蘭4-6月及9月的新芽萌發營養芽機率達50%以上,天鵝素心蘭則是1、2月的新芽萌發營養芽率較高;鐵骨素心蘭1、12月的營養芽有較佳的萌發花芽能力,天鵝素心蘭則是2、3月份的營養芽有較佳的萌發花芽能力。鐵骨素心蘭3月份萌發的營養芽,於萌發後第12-16週停頓生長,且有單一腋芽強勢生長的情形產生,顯示12-16週可能為決定花芽分化的關鍵,於第28週的營養芽可觀察到花芽分化,假球莖中的澱粉含量是該營養芽是否抽梗之關鍵。
日夜溫30/25℃與慣行栽培溫度皆可讓鐵骨素心蘭抽梗開花,25/20、20/15℃兩種日夜溫則會抑制鐵骨素心蘭抽梗,30/25℃的處理可在試驗後1個月抽梗且會增加小花數。各溫度處理的營養芽萌發數在處理後第3個月的增加量最為明顯,但萌發的總數會隨溫度增加而減少,各溫度之中以25/20℃最利於鐵骨素心蘭營養生長及腋芽的發育但不利於花芽分化,20/15℃則會顯著的抑制鐵骨素心蘭營養生長。BA(benzyladenine, BA)可在未控溫的環境下於處理後1個月促進鐵骨素心蘭抽梗,但會使花序上的小花數減少。BA會在施用後第2-3個月促進營養芽的萌發,但隨BA施用濃度的增加會抑制其營養生長與假球莖發育。30/25℃時施用BA的催花效果最顯著,在試驗後1-1.5個月促進抽梗,會增加鐵骨素心蘭的花梗數,但造成花序頂端小花簇生,25/20℃則會抑制BA促進抽梗的效果。溫度與BA兩處理因子在處理後第3個月,對鐵骨素心蘭的營養生長存在交感效應,低溫加上BA的處理可促進營養芽萌發;高溫加上BA的處理會使營養生長受到抑制,對假球莖的充實與腋芽的發育有不良的影響,也可能對下一季的開花表現有不良影響且會影響葉芽的觀賞價值。
從本研究的觀察可做出一個假設,素心蘭全年的營養生長與生殖生長具有週期性,這個生育習性應該是受到溫度的影響,冬季20℃以下的溫度抑制營養生長與花芽分化,但有利於已發育的假球莖的充實;春季與秋季25℃左右的溫度則有利於素心蘭的營養生長及腋芽的發育,但仍不利於花芽分化;夏秋之際30℃左右的高溫可促進素心蘭的花芽分化。素心蘭須要有週期性的溫度變化才能使各生長發育階段順利成長,BA的施用可以取代夏季高溫的催花效果,但是在使用上需要注意植株的營養狀態,並且要注意過度增生的營養芽會造成養分的競爭而使植株生長不良。

Abstract
This paper investigates the annual germination habits of vegetative buds and flower buds of both Cymbidium ensifolium ‘Iron bone’ and Cymbidium ensifolium ‘Swan’. The results show vegetative shoots of these two Cymbidium ensifolium cultivated variety emerge every month, with the greatest vegetative shoot emergence occurring during February to May and August to September. The flower bud formatting period occurs from May to November, with the peak appearance durring September and October. Of Cymbidium ensifolium ‘Iron bone’, the time the vegetative shoot grows to the next generation shoot was 150-200 days, and 200-250 day for Cymbidium ensifolium ‘Swan’. As to the developing time of vegetative shoot to flower bud, the time of the shoots that emerge in spring and summer is shorter than the shoots which emerge in winter. To the rate of vegetative shoot emerge in each month, the one of Cymbidium ensifolium ‘Iron bone’ vegetative shoot which emerge both from April to June and in September is more than 50%. And the rate of Cymbidium ensifolium ‘Swan’ vegetative shoots that emerged in January to February are higher than those in the other month. In the rate of flower bud emergence, the vegetative shoots of Cymbidium ensifolium ‘Iron bone’ that emerged in January or December and the ones of Cymbidium ensifolium ‘Swan’ that emerged in February or March had the better probability of flower bud emerging. The Cymbidium ensifolium ‘Iron bone’ vegetative shoots that emerged in March cease its growth and produced the strong growth of a single axillary bud during Weeks 12 to 16 after emergence. This condition may mean that Week 12 to Week 16 is the critical period for floral initiation after vegetative shoot emergence. We also observed floral development in Cymbidium ensifolium ‘Iron bone’ during Week 28 after vegetative shoot emergence. The starch content in the pseudobulbs is the key to enable the vegetative shoot to flower.
This study found that two different temperature could stimulate Cymbidium ensifolium ‘Iron bone’ spiking. The first is the day/night temperature of 30/25℃, and the second is conventional culture temperature. Also, the day/night temperature of 25/20℃ and 20/15℃ could inhibit the spiking. The day/night temperature of 30/25℃ fostered plant spiking 1 month after experiment began, and increased the number of the florets. The numbers of the vegetative shoot emergence increase at the third month after the treatment began, and it is most obvious. But the total of the vegetative shoot emergence declined within the temperature increasing. Among these temperatures, the most appropriate one for the vegetative shoot growth and axillary bud development of Cymbidium ensifolium ‘Iron bone’ is 25/20℃. However, this is not conducive to floral development. Besides, the 20/15℃ temperature treatment inhibit the vegetative growth of Cymbidium ensifolium ‘Iron bone’ obviously. Without the temperature being controlled, one month after treatment began, BA (benzyladenine, BA) stimulated plant spiking, but decreased the number of florets on the inflorescence. In addition, at the second to the third month, BA promote the vegetative shoots germination, but inhibited its growth and pseudobulbs’ development within the concentration increasing of BA application. The effect of BA was evident by the temperature of 30/25℃. BA advances the spiking time after the experiment began, and increases the number of the flower stems, but it could also cluster the top of the inflorescence. By temperature of 25/20℃, BA inhibit the spiking. With the experiment of the temperature and the BA treatment for Cymbidium ensifolium ‘Iron bone’, there is an obvious interaction of the vegetative growth at the third month after the experiment began. The effects of BA with the low temperature could promote the vegetative shoot emergence. Howerver, the ones with the high temperature would inhibit the vegetative growth, and make a bad influence on the pseudobulb enrichment and the axillary bud development. This could also cause effect the next flowering performance and the ornamental value of adult plant in the following season.
The results suggest the hypothesis, the vegetative and reproductive growth of Cymbidium ensifolium is periodic year round. This growth habit should be affected by the temperature. The temperature in winter below 20℃ inhibit the vegetative growth and the floral development, but is conducive to the pseudobulbs enrichment developing. About 25℃ in the spring and autumn, this degree can promote the vegetative growth and the axillary bud development, but still it is not conducive to the floral development. However, a high degree around 30℃ in summer and autumn could promote the floral development. Cymbidium ensifolium requires the periodic temperature changing to enable its growth and development. The application of BA can replace the high temperature in summer to the flower induce, meanwhile, it should be pay attention to the nutritional status of plants, and to the excessive proliferation of the vegetative shoots, which could cause nutrient competition, result in poor plant growth.
URI: http://hdl.handle.net/11455/29424
其他識別: U0005-0708201223041700
Appears in Collections:園藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-7098032005-1.pdf3.34 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.