Please use this identifier to cite or link to this item:
標題: 微晶矽薄膜元件之模擬研究
TCAD Simulations of Microcrystalline Thin Film Devices
作者: He, Ren-Yu
關鍵字: 微晶矽;microcrystalline silicon;模擬;太陽電池;薄膜電晶體;simulation;solar cell;TFT
出版社: 光電工程研究所
引用: [1]R. Fluckiger, J. Meier, H. Keppner, M. Gotz, and A.Shah, Proc. 23rd lEEE PVSC, 1993, p. 839. [2]H. Liu et al., Solid State Comm., 58(9), 1986, p. 601. [3]M.J. Williams et al., AIP Conf. Proc. , 234, 1991, 211. [4]R. Fluckiger, J. Meier, M. Gotz and A. Shah, to bepublished in J. Appl. Phys., Jan. 1995. [5]J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, A. Shah.IEEE,First WCPEC;Dec,5-9,1994;Hawaii. [6]Arvind Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, U. Graf,Thin Solid Films 403-404(2002)179-187。 [7]O. Vetterl, F. Finger*, R. Carius, P. Hapke, L. Houben, O. Kluth,A. Lambertz, A. MuK ck, B. Rech, H. Wagner. Solar Energy Materials & Solar Cells 62 (2000) 97-108. [8]Corinne Droz, Evelyne Vallat-Sauvain, Julien Bailat, Luc Feitknecht, Johannes Meier, Xavier Niquille, Arvind Shah. 3rd World Conference on Photovoltaic Energy Conversion May 11-18.2003 Osaka. Japan. [9]Arvind Shah*, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, U. Graf. Thin Solid Films 403 –404 (2002) 179–187. [10]A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 285 (5427) (1999) 692. [11]非晶矽/單晶矽異質接太陽電池之研究,戴錫坡,國立東華大學,07,2007。 [12]Handbook of Chemistry and Physics, 1998, p. F-200. [13]S.O.Kasap,"Optoelectronics and photonics:principles and practices",pp.256-257,2001 . [14]Semiconductor Devices:Physics and Technology 2nd,S.M.Sze,WILEY,p.321 [15]The Physics of Solar Cells,Jenny Nelson,Imperial College Press,p.14. [16]Fabrication, Characterisation and Modelling of Nanocrystalline Silicon Thin-Film Transistors Obtained by Hot-Wire Chemical Vapour DePosition, Dosi Dosev ,2003. [17]Thin Film Transistors,edited by Cherie R.Kagan,Paul Andry,IBM T, Watson Research Center YorkTown Heights ,New York, USA,p.36. [18]J. Puigdollers,D. Dosev ,A. Orpella , C.Voz , D. Peiro , J. Bertomeu ,L.F. Marsal , J. Pallares , J. Andreu , R. Alcubilla , Materials Science and Engineering B69–70 (2000) 526–529. [19]Sentaurus’ user manual , 2006. [20]Pinto M.R., Conor S. Rafferty, and Robert W. Dutton, “PISCES2 - Poisson and Continuity Equation Solver”, Stanford Electronics Laboratory Technical Report, Stanford University, September 1984. [21] Silvaco technical solutions library. [22]Silvaco ATHENA user manual ,2006. [23]Silvaco ATLAS user manual ,2006. [24]Slotboom, J.W., “The PN Product in Silicon”, Solid State Electronics 20 (1977): 279-283. [25]Hall, R.N., “Electron Hole Recombination in Germanium”, Phys. Rev. 87 (1952): 387. [26]Shockley W., and W.T. Read, “Statistics of the Recombination of Holes and Electrons”, Phys. Rev.87 (1952): 835-842. [27]Dziewior J. and W. Schmid, “Auger Coefficient for Highly Doped and Highly Excited Silicon”, Appl. Phys. Lett. Vol. 31 (1977): 346-348. [28]Selberherr, S. Analysis and Simulation of Semiconductor Devices. Wien, New York: Springer-Verlag, 1984. [29]H.Takakura,Y. Hamakawa,Solar Energy Materials & Solar cells 74(2002) 479-487. [30]H. Taski,W.Y. Kim,M. Hallerdt,M. Konagai and K. Takahashi,J.Appl.Phys. 63(2),15 January 1988. [31]“Microcrystalline Silicon TFTs for Active Matrix Displays”,SID 2006 DIGEST,p.204~207.
In this thesis, we use two commercial simulation tools to simulate devices' electric behavior. We apply the tools to establish microcrystalline silicon thin film (μc-Si) optoelectronic devices such as microcrystalline silicon thin film solar cells and microcrystalline silicon thin film transistors. These simulations are designed to change the device structure or change the distribution of defect states, and then we can observe the trend of the devices' output characteristics. In the beginning, we use a simple p-i-n structure and add a grain boundary to simulate the microcrystalline silicon thin film solar cell. The first variable is the concentration of D-states density. In oder to achieve a high efficiency of a solar cell, the concentration of D-states density must be low and the grain size of silicon crystal must be large enough. The second variable is the change of i layer thickness. The third variable is adding the multi-grain boundary in the microcrystalline silicon thin film. It is obvious that the multi-grain boundary affects the short circuit current, and reduces the efficiency of the solar cell. Also, we apply the same concept to simulate microcrystalline silicon thin film transistors. Finally, this work needs accurate mach experiment data, and we will optimize this work with 2D or 3D simulations.

在本篇論文中,主要是利用商用的TCAD模擬軟體,來建立微晶矽薄膜模型,並且應用於太陽電池與薄膜電晶體等元件,對於改變不同結構或者不同缺陷狀態分佈等變因,進行實驗研究,以觀察元件之輸出特性改變。在微晶矽太陽電池方面,一開始,先使用一個簡單的p-i-n結構,在i層中加入一個晶界(grain boundary)來模擬微晶矽中非晶相的部份,第一個變因為改變晶界中缺陷狀態的濃度,觀察其改變對於太陽電池之四種輸出參數之影響。i層為太陽電池主要的吸光層,第二變因為變動不同i層厚度,可以看出不同厚度時太陽電池的輸出表現。再來,第三個變因是在微晶矽薄膜中加入更多的晶界(grain boundary),考慮較為複雜的情況,更多的晶界(grain boundary)對於短路電流影響較大,也因此降低了太陽電池的轉換效率。同時我們也使用了與設計微晶矽薄膜太陽電池相同的概念來建立微晶矽薄膜電晶體,也討論在微晶矽薄膜中晶界數量對於薄膜電晶體輸出特性的影響。最後,為了與實作實驗相互配合,讓TCAD軟體來輔助實驗,於是將實驗量得的數據,利用這些已建立元件模型,進行物理參數的微調,使得模擬元件模型與實作之輸出特性相同,方便將來真正實作之趨勢分析。
其他識別: U0005-1507200816533100
Appears in Collections:光電工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.