Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2948
標題: Fabrication of post plasma treated aluminum doped zinc oxide thin films for solar cell applications
應用於太陽能電池之電漿後處理氧化鋅掺鋁薄膜之研製
作者: Chen, Ying-Ching
陳穎慶
關鍵字: 氧化鋅掺鋁薄膜;Transparent conductive oxide,Aluminum doped zinc oxide;射頻磁控濺鍍系統;電漿增強化學氣相沉積;電漿;R.f. magnetron sputtering system;PECVD;Plasma
出版社: 光電工程研究所
引用: [1] David S. Ginley and Clark Bright, MRS Bulletin, 25(8) 15-18 (2000). [2] P. K. Song*, Shigesato, Itaru Yasui, Itaru Yasui, C. W. Ow-Yang and David C. Paine, Japanese Journal of Applied Physics, 37 1870-1876 (1998). [3] S. S. Park, H. Zheng, J.D. Mackenzie, Materials Letters, 22 175-180 (1995). [4] A. E. Rakhshani, Y. Makdisi and H. A. Ramazaniyan, Journal of Applied Physics, 83(2) 1049-1057 (1998). [5] Tadatsugu Minami, Semiconductor Science and Technology, 20 S35-S44 (2005). [6] K. H. Kim, K. C. Park and D. Y. Ma, Journal of Applied Physics, 81 (12) 7764-7772 (1997). [7] Tadatsugu Minami, H. Nanto and S. Takata, Japanese Journal of Applied Physics, 23 (5) L280-L282 (1984). [8] S. Major, Satyendra Kumar, M. Bhatnagar and K.L. Chopra, Applied Physics Letters, 49(7) 394-396 (1986). [9] J. Hu and Roy G. Gordon, Journal of Applied Physics, 71 (2) 880-890 (1992). [10] H. Kim and C. M. Gilmore, Applied Physics Letters, 76 (3) 259-261 (2000). [11] X. Jiang, Applied Physics Letters, 83 (9) 1875-1877 (2003). [12] M.A. Martinea, J. Herrero, M.T. Gutierrez, Solar Energy Materials and Solar Cells, 45 75-86(1997). [13] V. Sittinger, F. Ruske, W. Werner, B. Szyszka, B. Rech, J. Hüpkes, G. Schöpe, H. Stiebig, 496 16-25 (2006). [14] J. Müller, B. Rech, J. Springer, M. Vanecek, Solar Energy, 77 917-930 (2004). [15] J. Springer, A. Poruba, M. Vanecek, S. Fay, L. Feitknecht, N. Wyrsch, J. Meier, A. Shah, T. Repmann, O. Kluth, H. Stiebig, B. Rech, European Photovoltaic Solar Energy Conference, 17 1-6 (2001). [16] J. Yoo, J. Lee, S. Kim, K. Yoon, I. J. Park, S. K. Dhungel, B. Karunagaran, D. Mangalaraj and Junsin Yi, Physica Status Solidi, 2 (3) 1228- 1232 (2005). [17] O. Kluth*, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, H.W. Schock, Thin Solid Films, 351 247-253 (1999). [18] F. Ruske*, C. Jacobs, V. Sittinger, B. Szyszka, W. Werner, Thin Solid Films, 515 8695-8698 (2007). [19] M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig and B. Rech, Journal of Applied Physics, 101 (7) 074903-1~11 (2007). [20] A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, M. Okuda, Japanese Journal of Applied Physics, 35 L56-L59 (1996). [21] R. Banerjee, S. Ray, N. Basu, A. K. Batabyal and A. K. Barua, Journal of Applied Physics, 62 (3) 912-916 (1987). [22] H. Gómez, A. Maldonado, R. Castanedo-Pérez, G. Torres-Delgado, M. de la L. Olvera, Materials Characterization, 58 708-714 (2007). [23] Y. S. Kim, W. P. Tai, Applied Surface Science, 253 4911-4916 (2007). [24] Z.L. Pei, X.B. Zhang, G.P. Zhang, J. Gong, C. Sun, R.F. Huang, L.S. Wen*, Thin Solid Films, 497 20-23 (2006). [25] K. Tominaga*, N. Umezu, I Mori, T. Ushiro, T. Moriga, I. Nakabayashi, Thin Solid Films, 334 35-39 (1998). [26] F. Ruske, A. Pflug, V. Sittinger, W. Werner, B. Szyszka*, Thin Solid Films, 502 44-49 (2006). [27] I. Hamberg and C.G. Granqvist, Journal of Applied Physics, 60 R123-R159 (1986). [28] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni and T. O. Mason, Journal of Electroceramics, 13 167-175 (2004). [29] D.C. Look, J.W. Hemsky and J.R. Sizelove, Physical Review Letters, 82 (12) 2552-2555 (1999). [30] C.G. Van de Walle*, Physical Review Letters, 85 (5) 1012-1015 (2000). [31] D.M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B.K. Meyer, S. B. Orlinskii, J. Schmidt, P.G. Baranov, Physical Review Letters, 88 (44) 045504-1~4 (2002). [32] E. V. Lavrov*, J. Weber, and F. Börrnert, Chris G. Van de Walle, R. Helbig, Physical Review B, 66 165205-1~7 (2002). [33] W. Y. Liang, A.D. Yoffe, Physical Review Letters, 20 (2) 59-62 (1968). [34] B.J. Jin, S. Im*, S.Y. Lee, Thin Solid Films, 366 107-110 (2000). [35] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Applied Physics Letters, 68 (3) 403-405 (1996). [36] K. Ellmer, Journal of Physics D: Applied Physics, 34 3097-3108 (2001). [37] G. Haacke, Journal of Applied Physics, 47 (9) 4086-4089 (1976). [38] Roy. G. Gordon, MRS Bulletin, 25 (8) 52-57 (2000). [39] F.A. Kröger, “The Chemistry of Imperfect Crystals", North-Holland, A msterdam, Netherlands, 1974. [40] Antônio Claret Soares Sabioni, Solid State Ionic, 170 145-148 (2004). [41] H. K. Bowen, D. R. Uhlmann and W. D. Kingery, “Introduction to Ceramics”, John Wiley & Sons. Inc. 2nd , 1988. [42] M. Chen, Z. L. Pei, X. Wang, X. H. Liu, C. Sun and L. S. Wen, Journal of Physics D: Applied Physics, 33 2538-2548 (2000). [43] T. Minami, H. Sato, H. Nanto, S. Takata, Japanese Journal of Applied Physics, 24(10) L781-L784 (1985). [44] T. Minami, MRS Bulletin, 25 (8) 38-44 (2000). [45] L. Gupta, A. Mansingh and P. K. Srivastava, Thin solid films, 176 33-44 (1989). [46] G. Sanon, R. Rup and A. Mansingh, Rup and Abhai Mansingh, Physical Review B, 44 (11) 5672-5680 (1991). [47] B. E. Sernelius*, K. F. Berggren, Z. C. Jin, I. Hamberg, C. G. Granqvist, Physical Review B, 37 (17) 10244-10248 (1988). [48] J. Chevallier, B. Theys, A. Lusson, and C. Grattepain, Physical Review B, 58 (12) 7966-7969 (1998). [49] Chris G. Van de Walle*, Journal of Alloys and Compounds, 446-447 48-51 (2007). [50] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Physical Review B, 61 (22) 15019-15027 (2000). [51] M. Konuma, “Plasma Techniques for Film deposition”, Alpha Science International Ltd. 2005. [52] Brian Chapman, “Glow Discharge Processes”, John Wiley & Sons, 1980. [53] Smith,”Thin-Film Deposition-Principle & Practice”, McGraw Hill, 1999. [54] D. M. Mattox, Journal of Vacuum Science and Technology A, 7 (3) 1105-1114 (1989). [55] John A. Thornton, Journal of Vacuum Science and Technology, 11 (4) 666-670 (1974). [56] K. Ellmer, Journal of Physics D: Applied Physics, 33 R17-R32 (2000). [57] S. M. Sze, “Semiconductor Devices: Physics and Technology”, John Wiley & Sons, Inc. [58] Neamen, “An introduction to semiconductor devices”, McGRAW-Hill Inc. [59] Milton Ohring, “Materials science of thin films”, Academic Press. [60] K. H. Kim, R. A. Wibowo *, B. Munir, Materials Letters, 60 1931-1935 (2006). [61] K. H. Kim, Journal of Applied Physics, 81 (12) 7764-7772 (1997). [62] D. J. Kwak*, K. Park, B. S. Kim and S. H. Lee, S. J. Lee and D. G. Lim, Journal of the Korean Physical Society, 45 (1) 206-210 (2004). [63] W. Liu, G. Du, Y. Sun, Y. Xu , T. Yang, X. Wang, Y. Chang and F. Qiu, Thin Solid Films, 515 3057-3060 (2007). [64] J. F. Cordaro, Y. Shim and J.E. May, Journal of Applied Physics, 60 (12) 4186-4190 (1986). [65] T. Minami, H. Nanto, and S. Takata, Japanese Journal of Applied Physics, 25 (9) L776-L779 (1986). [66] H. C. Cheng, F. S. Wang and C. Y. Huang, IEEE Transactions on Electron Devices, 44 (1) 64-68 (1997). [67] J. S. Park, J. K. Jeong, Y. G. Mo and H. D. Kim, Applied Physics Letters, 90 262106-1~3 (2007).
摘要: 
本論文的實驗可分為兩個部份:前半段的實驗由射頻磁控濺鍍系統(r.f. magnetron sputtering system)製備氧化鋅掺鋁(AZO)薄膜;緊接著,前製程製備之薄膜經由電漿增強化學氣相沉積(PECVD)施以不同的氣體電漿後處理。
基板溫度、工作壓力以及不同比例之氬氣與氫氣混合之電漿環境對於射頻磁控濺鍍系統所製備之氧化鋅掺鋁薄膜皆有關聯性的影響。在前半段的製程,我們的溫度皆控制在200C,除非參數是溫度外(RT~300C);壓力始終維持在5E-2Torr,除非變因是壓力(1E-1 Torr~1E-2 Torr);氬氣流量也始終控制在30 sccm, 除非是氬氣與氫氣混合比例之電漿環境(2%~11.76%)。
各種不同環境前製程所製備之薄膜,接著利用電漿增強化學氣相沉積施以電漿處理。氫氣先被用來做為實驗的氣體電漿,根據不同的後處理時間(0 min.~120 min.)以研究是否有飽和趨勢呈現。各種不同的氣體,如:甲烷(CH4)、氨氣(NH3)、氬氣(Ar)以及氟烷(CF4)則根據氫氣所呈現的飽和趨勢,施以電漿處理(60 min.)。藉由前後製成的差異性,薄膜的結構、電學以及光學特性將被研究及比較。
氣體電漿後處理可提供原子級的能量,因此不需像退火般的高溫製程,便能對薄膜的電學以及光學有明顯的改善效果。此方法可使得氧化鋅掺鋁薄更被廣泛的應用。

The experiment can be divided into two sections: AZO films are prepared by r.f. magnetron sputtering system and PECVD follows up a post plasma treatment on the pre-sputtering films.
The related influences of substrate temperature, working pressure and different H2 + Ar ambient are investigated during r.f. magnetron sputtering deposition of AZO films. At pre-sputtering process, the temperature is always kept at the range 200C expect for the coefficient is temperature (RT~300C).Besides, the working pressure except for the variation is pressure(1E-1Torr~1E-2Torr).always is maintained at the 5E-2Torr.The chamber is always preserved under 30 sccm Ar flow rate except for the different H2 gas flow ratio (2%~11.76%).
Post gas plasma treatments follow up the different pre-sputtering AZO films by PECVD. Amphoteric H2 plasma is firstly induced to investigate if the saturation tendency occurs during different treated times (0~120 min.). Different gas plasma such as CH4, NH3, Ar and CF4 carry on the experiment at the critical saturation condition (60min.). The structural, electrical and optical characteristics will be studied and compared in order to investigate the influences of the gas plasma on AZO films.
In the recent years, the flexible substrates have been applied for many optoelectronic devices, but are limited by the poor sustaining in high temperature. Many studies on the post treatment on AZO films have been investigated, however a high temperature is needed to anneal. Post plasma treatment for increasing the electrical and optical properties has been investigated. Here provides a low temperature procedure of post plasma treatment and produces atomic plasma in a different way. This method can have a major effect on widening the applications of the flexible substrate.
URI: http://hdl.handle.net/11455/2948
其他識別: U0005-2608200815393900
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.