Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2950
標題: Effect of Crystalline Structures on the Performance of Hydrogenated Microcrystalline Silicon Solar Cells
結晶結構對氫化微晶矽太陽電池效能的影響
作者: 許詩函
Hsu, Shih-Han
關鍵字: hydrogenated microcrystalline silicon solar cells;氫化微晶矽太陽電池氫化微晶矽;crystal orientation;結晶向
出版社: 光電工程研究所
引用: [1] Lihui Guo, Michion Kondo, Makoto Fukawa, Kimihiko Saitoh, Akihisa Matsuda, Jpn. J. Appl. Phys. Vol. 37 (1998) pp. L1116-L1118 . [2] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuKck, B. Rech, H. Wagner, Solar Energy Materials & Solar Cells 62 (2000) 97. [3] T. Kitagawa, M. Kondo, A. Matsuda, Journal of Non-Crystalline Solids 266-269 (2000) 64-68. [4] Y. Nasuno, M. Kondo, A. Matsuda, Photovoltaic Specialists Conference (2000) 142-145. [5] Michio Kondo, Makoto Fukawa, Lihui Guo, Akihisa Matsuda, Journal of Non-Crystalline Solids 266-269 (2000) 84-89. [6] B. Rech, T. Roschek, J. Muller, S. Wieder, H. Wagner, Solar Energy Materials & Solar Cells 66 (2001) 267-273. [7] O. Vetterl, A. Lambertz , A. Dasgupta, F. Finger, B. Rech , O. Kluth, , H. Wagner, Solar Energy Materials & Solar Cells 66 (2001) 345-351. [8] Ujjwal K. Das, Scott Morrison, Arun Madan, Journal of Non-Crystalline Solids 299-302 (2002) 79-82. [9] S. Ray, S. Mukhopadhyay, T. Jana, R. Carius, Journal of Non-Crystalline Solids 299-302 (2002) 761-766. [10] Takuya Matsui, Michio Kondo, Akihisa Matsuda, 3rd World Conference on Photovoltaic Energy Conversion (2003) 1548-1551. [11] G. Ambrosone, U. Coscia, S. Lettieri, P. Maddalena, C. Minarini, Materials Science and Engineering B101 (2003) 236-241. [12] G. Ambrosone, U. Coscia, R. Murri, N. Pinto, M. Ficcadenti, L. Morresi, Solar Energy Materials & Solar Cells 87 (2005) 357-386. [13] Sumita Mukhopadhyay, Amartya Chowdhury, Swati Ray, Journal of Non-Crystalline Solids 352 (2006) 1045-1048. [14] M. Kondo, T. Matsui, Y. Nasuno, H. Sonobe, S. Shimizu, Thin Solid Films 501 (2006) 243-246.
摘要: 
The crystalline volume fraction and crystal orientation of hydrogenated microcrystalline silicon (μc-Si:H) films are controlled by plasma deposition conditions. The properties of the μc-Si:H films are significantly influenced by their crystalline volume fractions and crystal orientations .
In this thesis, RF power, hydrogen dilution ratio and pressure of a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) are changed to deposit μc-Si:H films with various crystalline volume fractions and crystal orientations. These films are used to fabricate the i layers of p-i-n solar cells to investigate the effect of crystalline volume fractions and crystal orientations on the performance of solar cells.
The experimental results demonstrate, for fixed RF power at 100 W and changed pressure and hydrogen dilution ratio, that the distribution of (111) crystal orientation is more than that of (220) crystal orientation. Reduced RF power from 100 W to 60 W can increase the (220)/(111) crystal orientation ratio. This result indicates that decreasing RF power increases the growth of (220) crystal orientation. For the RF power fixed at 100 W and changed pressure from 4 to 6 torr and hydrogen dilution ratio from R = 50 to R = 100, the crystalline volume fraction of the films are changed from 66% to 80%. As RF power reduced from 100 to 60 W, the crystalline volume fraction slightly drops from 78% to 67%. Under these deposition conditions, the crystalline volume fractions of the films are limited in the range of 66% to 80%.
The energy transfer efficiency of μc-Si:H solar cell with the i layer deposited by 60 W is three times higher than that of deposited by 100 W, and the (220)/(111) crystal orientation ratio of the 60 W sample is also three times higher than that of the 100 W sample. The results indicate the (220)/(111) ratios significantly influence the performance of solar cells.
Fixed pressure, hydrogen dilution ratio and RF power at 6 torr, 75 and 60 W, μc-Si:H solar cells with changing i layer thickness from 0.4, 1, 2 to 3 μm are fabricated. For increasing the i layer thickness, the (220)/(111) ratio is only slightly changed. The crystal volume fraction 20% of the 0.4 μm cell is obviously increased to the value 67% of the 1 μm cell. The solar cell with 2 μm μc-Si:H i layer has the relative high efficiency 2.73%, and the crystal volume fraction, open-circuit voltage, short-circuit current density and fill factor are 78%, 0.865 V, 6.79 mA/cm2 and 46.4%, respectively.

氫化微晶矽(μc-Si:H)薄膜的結晶比例及結晶方向受電漿加強化學氣相沉積製程條件控制。結晶比例的高低及不同的結晶方向影響氫化微晶矽薄膜的特性。
本論文以改變13.56 MHz射頻功率,氫氣稀釋比例及沈積壓力製作具有不同結晶比例及結晶向的氫化微晶矽薄膜,這些薄膜應用至p-i-n太陽電池的i層以探討不同結晶比例及結晶向的薄膜結構對於太陽電池性能所造成的影響。
實驗結果顯示在固定射頻功率為100 W的情況下,改變壓力及氫稀釋比,結晶向(111)對(220)的分佈主要為(111)多於(220)晶向。射頻功率由100 W降低至60 W,結晶向(220)/(111)的比例隨著射頻功率的降低而增加。此結果指出低的射頻功率易於沈積較多(220)結晶向薄膜。固定射頻功率為100 W,改變壓力4 torr至6 torr及氫稀釋比由R = 50至100顯示薄膜結晶比例由66%至80%,而將射頻功率由100 W降低至60 W,結晶比例由78%下降至67%,顯示薄膜的結晶比例在上述條件下變化範圍限制在66%至80%。
改變射頻功率60 W製作的太陽電池轉換效率為100 W製作的3倍,而(220)/(111)比值也增加約3倍,此結果顯示(220)/(111)比例對於太陽電池的性能影響顯著。
在固定壓力為6 torr、氫氣稀釋比例為75、射頻功率為60 W,改變本質層厚度分別為0.4、1、2及3 μm製作太陽電池。隨著厚度的增加,(220)/(111)比值無明顯變化,但結晶比例由0.4 μm試片約20%明顯上升至至1 μm試片約67%。本質層厚度為2 μm的太陽電池有較佳的效率2.73%,其結晶比例約為78%,VOC、JSC以及FF分別為0.865 V、6.79 mA/cm2以及46.4%。
URI: http://hdl.handle.net/11455/2950
其他識別: U0005-2608200822090000
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.