Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2951
標題: p/i (氫化氫化非晶矽)/n (單晶矽)異質接面太陽電池
p/i (a-Si:H)/n (c-Si) Heterojunction Solar Cells
作者: 彭振維
Peng, Chen-Wei
關鍵字: 異質接面太陽電池;Heterojunction Solar Cell
出版社: 光電工程研究所
引用: [1] Yoshihiko Kanemitsu,Optical Diagnostics of Materials and Devices for Opto, Micro, and Quantum Electronics, , Proceedings of SPIE Vol. 5024 (2003) [2] A.Goetzber ger, C.Hebling, Solar Energy Mater. Solar Cells 62 (2000) 1. [3] N. Jensen, R.M. Hausner, R.B. Bergmann, J.H. Werner, U.Rau, Prog.Photovolt. : Res. Appl.10 (2002) 1. [4] M.T anaka, S.Okamoto, S. Tsuge, S. Kiyama, Proceedings of the Third World Conference on Photovoltaic Energy Conversion,Osaka, in press [5] M. Tanaka, S. Okamoto, S. Tsuge, S. Kiyama, Proc. 3rdWorld Conference on Photovoltaic Energy Conversion, Osaka, 2003, p. 955. [6] Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano,Jpn. J. Appl. Phys. 31 (1992) 3518 [7] D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292 (1977) [8] Mikio Taguchi Kunihiro Kawamoto, PROGRESS IN PHOTOVOLTAICS] RESEARCH AND APPLICATIONS Pro Photovolt Res Appl 2000, 8, 503-513 [9] B. Jagannathan, Solar Energy Materials and Solar Cells 46 (1997) 289-310 [10] D. Muñoz, Thin Solid Films 516 (2008) 761-764 [11] K.v. Maydell, Journal of Non-Crystalline Solids 352 (2006) 1958-1961 [12] OVetterl, Thin Solid Films 427 (2003) 46-50 [13] T.H. Wang, 0-7803-8707-4/05/2005 IEEE [14] T.H. Wang, Thin Solid Films 501 (2006) 284 - 287 [15] Emanuele Centurioni et, al , IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 11, NOVEMBER 2004 [16]曾昭憲,The influence of microdoping technique on the photodegradation of hydrogenated amorphous silicon p-i-n solar cells,NCHU,2006 [17] Irena Zubel,sensors and actuator A,93(2001),138-147 . [18] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano,Jpn. J. Appl. Phys. 31 (1992) 3518 [19]Cuiping Jia, Wei Donga, Caixia Liu, Xindong Zhang, Jingran Zhou Zhicheng Zhong,Hailin Xue, Huidong Zang, Baokun Xu, Weiyou Chen,Microelectronics Journal 37 (2006) 1297-1301 [20] W. Dong, X.D. Zhang, C.X. Liu, et al,Microelectron. J. 35 (2004)417-419 [21] I. Zubel,Sensors Actuators 84 (2000) 116-12 [22] A.S. Ferlauto, Thin Solid Film 455-456(2004)665-669 [23] Shui-Yang Lien , Dong-Sing Wuu, Thin Solid Films (2007) [24] Florian Einsele, Philipp J. Rostan and Markus B. Schubert J. Appl. Phys. 102, 094507 , 2007 . [25] Sang-Kyun Kim,Solar Energy Materials & Solar Cells 92 (2008) 298-301 [26] Hiroyuki Fujiwara, JOURNAL OF APPLIED PHYSICS 101, 054516, 2007 [27] Hiroyuki Fujiwaraa , APPLIED PHYSICS LETTERS 86, 032112 ,2005 [28] W.E. Spear, P.G. LeComber, Solid State Commun. 17 (1975) 1193. [29] H. Mahan, J. Ca rapella, B.P. Nelson, R.S. Crandall, I. Balberg, J. Appl. Phys. 69 (9) (1991) 6728. [30] H. Matsumura, J. Appl. Phys. 65 (1989) 4396. [31] S.R. Jadkar,Solar Energy Materials & Solar Cells 85 (2005) 301-312 [32] Y.J. Song, Solar Energy Materials & Solar Cells 64 (2000) 241-249 [33] D. Muñoz, Thin Solid Films 516 (2008) 761-764
摘要: 
本論文針對異質接面薄本質層(heterojunction with intrinsic thin layer: HIT)太陽電池進行研究,採用一般典型四英吋(晶向為(100),厚度約為525 μm,電阻率約為 1~10 ohm-cm)n型矽晶圓為基板,製作p (a-Si:H)/i (a-Si:H)/n (c-Si)太陽電池,p (a-Si:H)及i (a-Si:H)層薄膜以13.56 MHz電漿加強化學氣相(PECVD)沈積,i層並採用脈波調變電漿技術,在固定電漿關閉時間toff = 10 ms及改變電漿開啟時間由ton = 10 ms 至40 ms條件下製作具有不同矽氫鍵結微結構的氫化非晶矽薄膜以探討不同矽氫鍵結對太陽電池性能的影響。
傅氏紅外光譜測量結果顯示,降低電漿開啟時間可以增加薄膜內的單矽氫鍵結(SiH)及降低多矽氫鍵結結構(SiH2或(SiH2)n)。電流-電壓特性測量指出採用較低微結構(多矽氫鍵結佔總矽氫鍵結比例:RS = (SiH2/(SiH+SiH2))的氫化非晶矽i層可以提昇HIT太陽電池的填充因子,短路電流及轉換效率。
低微結構的氫化非晶矽薄膜具有較為緻密及低缺陷密度的結構,使得p/i 界面被覆較好,降低界面複合,且載子通過i層的缺陷複合也降低是改善太陽電池性能主要原因。
比對未加入本質層的太陽電池效能,薄本質層的加入可以減少 p n 界面電子電洞對復合,提昇太陽電池的開路電壓、短路電流、填充因子等特性。採用適當厚度及具有較多單矽氫鍵結(SiH)的氫化非晶矽i層可以提昇HIT太陽電池性能。

In this thesis, the heterojunction with intrinsic hydrogenated amorphous silicon (a-Si:H) thin layer ( heterojunction with intrinsic thin layer: HIT) solar cells are investigated. The solar cell structure of p(a-Si:H)/i(a-Si:H)/n (c-Si) are fabricated. The substrate is a typical 4-inch n-type wafer with (100) crystal orientation, 1~10 ohm-cm and about 525 μm thickness. The p and i a-Si:H layers are deposited by a 13.56 MHz plasma enhanced chemical vapor deposition. The i a-Si:H layers are especially deposited by pulse-wave modulation plasma technique with fixed plasma turn-off time toff = 10 ms and changed plasma turn-on time ton= 10 to 40 ms to selectively control the different silicon to hydrogen (SiH) bonding configurations. The effect of various Si:H bonds on the performance of HIT solar cells are explored.
Fourier-transform infrared spectra show that reducing the ton time can increase the monohydride (SiH) bonds and increasing the polyhydride ( (SiH2) or (SiH2)n) bonds. The I-V measurements indicate that the i layers of HIT solar cells with low microstructure (RS = (SiH2/SiH+SiH2) can increase the fill factor, short-circuit current and transfer efficiency.
Low-Rs a-Si:H films are more dense and have low defect densities. The passivation of p/i interface by low-Rs i a-Si:H can reduce the recombination at the interface and in the bulk of i layer.
Adding i a-Si:H layer at the p/n interface can effectively passivate the bonding defects due to formation of heterojunction. Reducing the interface recombination significantly increase the open-circuit voltage, short-circuit current and fill factor. Using a thin i layer a-Si:H with more SiH bonds can improve the performance of HIT solar cells.
URI: http://hdl.handle.net/11455/2951
其他識別: U0005-2608200822320600
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.