Please use this identifier to cite or link to this item:
標題: Design and Analysis on Nanorods Thin-Film Solar Cell
作者: 陳姿君
Chen, Tzu-Chun
關鍵字: 太陽電池;solar cell;奈米柱;nanorod
出版社: 光電工程研究所
引用: [1]Solar Generation V-2008 by EPIA & Greenpeace. [2]黃惠良主編,“太陽電池”,五南出版社,民97。 [3]H. F. Sterling and R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge” Solid-State Electronics, Vol.8, pp.653-654, 1965. [4]R. C. Chittick, J. H. Alexander, and H. F. Sterling, “The Preparation and Properties of Amorphous Silicon” J. Electrochem. Sac., Vol. 116, pp.77-81, 1969. [5]Triska, A., Dennison, D., and Fritzsche, H. “Hydrogen Content in Amorphous Ge and Si Prepared by RF Decomposition of GeH4 and SiH4”, Bulletin of American Physics Society, pp.20-392, 1975. [6]S. Morrison and A. Madan ,“Deposition of Amorphous Silicon Solar Cells via The Pulsed PECVD Technique”, IEEE, 2000. [7]O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth,A. Lambertz, A. MuK ck, B. Rech, and H. Wagner. “Solar Energy Materials & Solar Cells” Vol.62, pp.97-108, 2000. [8]C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, X. Niquille, A. Shah. 3rd World Conference on Photovoltaic Energy Conversion May 11-18.2003 Osaka. Japan. [9]B. M. Kayes, H. A. Atwater, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells” Journal Of Applied Physic,Vol. 97,pp.114302-1-114302-11, 2005. [10]T. J. kempa, B. Tian, D. R. Kim, J. Hu, X. Zhend, and C. M. Lieber, “Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices” NANO, Vol. 8, pp.3456-3460, 2008. [11]L. Hu, G. Chen, “Ananlysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications” NANO, Vol.7, pp.3249-3252, 2007. [12]B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources” NATURE , Vol. 449, pp.885-900, 2007. [13]C.-H. Hsu, H.-C. Lo, C.-F. Chen, “Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication” NANO, Vol.4, pp.471-475, 2004. [14]S.O.Kasap, “Optoelectronics and photonics: principles and practices”, pp.256-257, 2001. [15]Jenny Nelson, “The Physics of Solar Cells” Imperial College Press., pp.14, 2000. [16]A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, U. Graf. “Microcrystalline silicon and micromorph tandem solar cells” Thin Solid Films, Vol. 403-404, pp.178-187, 2002. [17]戴錫坡,“非晶矽/單晶矽異質接面太陽電池之研究”,國立東華大學。 [18]C. B. Honsberg, “Approaches for Ultra-High Efficiency Solar Cells,” 報告。 [19]Kaneka Co.,“NEDO/Ritsumeikan University Demographic Module Field Test and Operational Analysis” presented at the International PV. [20]Schmela M., Photon International,Vol.10, 2000. [21]Beneking C., Rech B., Wieder S., Kluth O., “Recent development of silicon thin film solar cells on glass substrates” Thin Solid Films, Vol.351, 1999. [22]D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si” Applied Physics Letters, Vol.31, pp.292-294, 1977. [23]Sentaurus’ user manual , 2006. [24]Pinto M.R., Conor S. Rafferty, and Robert W. Dutton, “PISCES2 - Poisson and Continuity Equation Solver”, Stanford Electronics Laboratory Technical Report, Stanford University, 1984. [25]S. C. Choo, “Theory of a Forward-Biased Diffused-Junction P-L-N Rectifier—Part I: Exact Numerical Solutions,” IEEE Transactions on Electron Devices, Vol. ED-19, no. 8, pp. 954-966, 1972. [26]J. del Alamo, S. Swirhun, and R. M. Swanson, “Measuring and Modeling Minority Carrier Transport in Heavily Doped Silicon,” Solid-State Electronics, Vol. 28, no. 1–2, pp. 47-54, 1985. [27]S. E. Swirhun, Y.-H. Kwark, and R. M. Swanson, “Measurement of Electron Lifetime, Electron Mobility and Band-Gap Narrowing in Heavily Doped p-Type Silicon,” in IEDM Technical Digest, Los Angeles, CA, USA, pp. 24-27, 1986. [28]S. E. Swirhun, J. A. del Alamo, and R. M. Swanson, “Measurement of Hole Mobility in Heavily Doped n-Type Silicon,” IEEE Electron Device Letters, Vol. EDL-7, no. 3, pp. 168-171, 1986. [29]J. A. del Alamo and R. M. Swanson, “Measurement of Steady-State Minority-Carrier Transport Parameters in Heavily Doped n-Type Silicon,” IEEE Transactions on Electron Devices, Vol. ED-34,no. 7, pp. 1580-1589, 1987. [30]L. Huldt, N. G. Nilsson, and K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in silicon,” Applied Physics Letters, Vol. 35, no. 10, pp. 776-777, 1979. [31]W. Lochmann and A. Haug, “Phonon-Assisted Auger Recombination in Si with Direct Calculation of the Overlap Integrals,” Solid State Communications, Vol. 35, no. 7, pp. 553-556, 1980. [32]R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” Journal of Applied Physics, Vol. 75, no. 11, pp. 7570-7572, 1994. [33]W. Shockley and W. T. Read, Physical Review 87, pp.835 , 1952. [34]Jeffery L. Gray, A computer model for the simulation of thin-film silicon-hydrogen alloy solar cells, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol.36,pp.906-912, 1989. [35]劉昌維,“非晶矽奈米柱薄膜太陽電池之設計與分析” , 國立中興大學光電研究所碩士論文,2008. [36]Luis Castaner and Santiago Silvestre “Modeling Photovoltaic System using Pspice” JOHN WILEY & SONS,LTD, pp.1-80, 2002.

In this thesis, numerical simulation was applied to evaluate the performance of nanostructure solar cells: Nanowall and nanorod. These simulation were performed by a commercial available Simulation Tool. After calibrate to real a-Si pin solar cell, the physical parameters for a-Si was established. The simulation results indicate the nanorod solar cell exhibit high short-circuit current density, slight lower open-circuit voltage and unaltered Fill factor as compared to conventional planar solar cell. By this simulation, the ultimate efficiency for nanorod-typeII solar cell is around 19.33%.
其他識別: U0005-1206200916184800
Appears in Collections:光電工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.