Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2954
DC FieldValueLanguage
dc.contributor李敏鴻zh_TW
dc.contributorMin-Hung Leeen_US
dc.contributor.advisorZing-Way Peien_US
dc.contributor.advisor裴靜偉zh_TW
dc.contributor.author陳姿君zh_TW
dc.contributor.authorChen, Tzu-Chunen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T05:24:37Z-
dc.date.available2014-06-06T05:24:37Z-
dc.identifierU0005-1206200916184800zh_TW
dc.identifier.citation[1]Solar Generation V-2008 by EPIA & Greenpeace. [2]黃惠良主編,“太陽電池”,五南出版社,民97。 [3]H. F. Sterling and R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge” Solid-State Electronics, Vol.8, pp.653-654, 1965. [4]R. C. Chittick, J. H. Alexander, and H. F. Sterling, “The Preparation and Properties of Amorphous Silicon” J. Electrochem. Sac., Vol. 116, pp.77-81, 1969. [5]Triska, A., Dennison, D., and Fritzsche, H. “Hydrogen Content in Amorphous Ge and Si Prepared by RF Decomposition of GeH4 and SiH4”, Bulletin of American Physics Society, pp.20-392, 1975. [6]S. Morrison and A. Madan ,“Deposition of Amorphous Silicon Solar Cells via The Pulsed PECVD Technique”, IEEE, 2000. [7]O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth,A. Lambertz, A. MuK ck, B. Rech, and H. Wagner. “Solar Energy Materials & Solar Cells” Vol.62, pp.97-108, 2000. [8]C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, X. Niquille, A. Shah. 3rd World Conference on Photovoltaic Energy Conversion May 11-18.2003 Osaka. Japan. [9]B. M. Kayes, H. A. Atwater, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells” Journal Of Applied Physic,Vol. 97,pp.114302-1-114302-11, 2005. [10]T. J. kempa, B. Tian, D. R. Kim, J. Hu, X. Zhend, and C. M. Lieber, “Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices” NANO, Vol. 8, pp.3456-3460, 2008. [11]L. Hu, G. Chen, “Ananlysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications” NANO, Vol.7, pp.3249-3252, 2007. [12]B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources” NATURE , Vol. 449, pp.885-900, 2007. [13]C.-H. Hsu, H.-C. Lo, C.-F. Chen, “Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication” NANO, Vol.4, pp.471-475, 2004. [14]S.O.Kasap, “Optoelectronics and photonics: principles and practices”, pp.256-257, 2001. [15]Jenny Nelson, “The Physics of Solar Cells” Imperial College Press., pp.14, 2000. [16]A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, U. Graf. “Microcrystalline silicon and micromorph tandem solar cells” Thin Solid Films, Vol. 403-404, pp.178-187, 2002. [17]戴錫坡,“非晶矽/單晶矽異質接面太陽電池之研究”,國立東華大學。 [18]C. B. Honsberg, “Approaches for Ultra-High Efficiency Solar Cells,” 報告。 [19]Kaneka Co.,“NEDO/Ritsumeikan University Demographic Module Field Test and Operational Analysis” presented at the International PV. [20]Schmela M., Photon International,Vol.10, 2000. [21]Beneking C., Rech B., Wieder S., Kluth O., “Recent development of silicon thin film solar cells on glass substrates” Thin Solid Films, Vol.351, 1999. [22]D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si” Applied Physics Letters, Vol.31, pp.292-294, 1977. [23]Sentaurus’ user manual , 2006. [24]Pinto M.R., Conor S. Rafferty, and Robert W. Dutton, “PISCES2 - Poisson and Continuity Equation Solver”, Stanford Electronics Laboratory Technical Report, Stanford University, 1984. [25]S. C. Choo, “Theory of a Forward-Biased Diffused-Junction P-L-N Rectifier—Part I: Exact Numerical Solutions,” IEEE Transactions on Electron Devices, Vol. ED-19, no. 8, pp. 954-966, 1972. [26]J. del Alamo, S. Swirhun, and R. M. Swanson, “Measuring and Modeling Minority Carrier Transport in Heavily Doped Silicon,” Solid-State Electronics, Vol. 28, no. 1–2, pp. 47-54, 1985. [27]S. E. Swirhun, Y.-H. Kwark, and R. M. Swanson, “Measurement of Electron Lifetime, Electron Mobility and Band-Gap Narrowing in Heavily Doped p-Type Silicon,” in IEDM Technical Digest, Los Angeles, CA, USA, pp. 24-27, 1986. [28]S. E. Swirhun, J. A. del Alamo, and R. M. Swanson, “Measurement of Hole Mobility in Heavily Doped n-Type Silicon,” IEEE Electron Device Letters, Vol. EDL-7, no. 3, pp. 168-171, 1986. [29]J. A. del Alamo and R. M. Swanson, “Measurement of Steady-State Minority-Carrier Transport Parameters in Heavily Doped n-Type Silicon,” IEEE Transactions on Electron Devices, Vol. ED-34,no. 7, pp. 1580-1589, 1987. [30]L. Huldt, N. G. Nilsson, and K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in silicon,” Applied Physics Letters, Vol. 35, no. 10, pp. 776-777, 1979. [31]W. Lochmann and A. Haug, “Phonon-Assisted Auger Recombination in Si with Direct Calculation of the Overlap Integrals,” Solid State Communications, Vol. 35, no. 7, pp. 553-556, 1980. [32]R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” Journal of Applied Physics, Vol. 75, no. 11, pp. 7570-7572, 1994. [33]W. Shockley and W. T. Read, Physical Review 87, pp.835 , 1952. [34]Jeffery L. Gray, A computer model for the simulation of thin-film silicon-hydrogen alloy solar cells, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol.36,pp.906-912, 1989. [35]劉昌維,“非晶矽奈米柱薄膜太陽電池之設計與分析” , 國立中興大學光電研究所碩士論文,2008. [36]Luis Castaner and Santiago Silvestre “Modeling Photovoltaic System using Pspice” JOHN WILEY & SONS,LTD, pp.1-80, 2002.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2954-
dc.description.abstract在本篇論文中,利用商業製程模擬軟體來建立三種奈米柱薄膜太陽電池之結構(nanowall、nanorod-typeI及nanorod-typeII),並分析與比較其輸出特性曲線。而由結果得知薄膜太陽電池之結構輸出表現依序為nanorod-typeII、nanowall及nanorod-typeI,因此針對nanorod-typeII太陽電池之結構來做探討。首先研究吸收層厚度、n型區域之直徑及柱長來進行模擬與比較,然後探討其短路電流、開路電壓、填充因子以及轉換效率的相關輸出特性,其最佳化之nanorod-typeII薄膜太陽電池之最高轉換效率約為19.33%。zh_TW
dc.description.abstractIn this thesis, numerical simulation was applied to evaluate the performance of nanostructure solar cells: Nanowall and nanorod. These simulation were performed by a commercial available Simulation Tool. After calibrate to real a-Si pin solar cell, the physical parameters for a-Si was established. The simulation results indicate the nanorod solar cell exhibit high short-circuit current density, slight lower open-circuit voltage and unaltered Fill factor as compared to conventional planar solar cell. By this simulation, the ultimate efficiency for nanorod-typeII solar cell is around 19.33%.en_US
dc.description.tableofcontents誌謝辭……………………………………………………………… I 中文摘要……………………………………………………………II Abstract………………………………………………………… III 目錄…………………………………………………………………IV 表目錄………………………………………………………………VI 圖目錄…………………………………………………………… VII 第一章 簡介……………………………………………… - 1 - 1-1 研究背景與動機………………………………… - 1 - 1-2 非晶矽材料(a-Si)……………………………… - 3 - 1-2-1 非晶矽材料之結構……………………………… - 3 - 1-2-2 非晶矽之吸收特性……………………………… - 4 - 第二章 文獻回顧………………………………………… - 6 - 第三章 太陽能電池原理及介紹………………………… - 7 - 3-1 太陽能電池之原理……………………………… - 7 - 3-1-1 太陽光譜………………………………………… - 7 - 3-1-2 太陽能電池操作原理…………………………… - 9 - 3-1-3 太陽能電池之特性分析…………………………- 11 - 3-2 薄膜太陽能電池之簡介…………………………- 15 - 3-2-1 氫化非晶矽薄膜太陽能電池之優缺點…………- 17 - 3-2-2 非晶矽薄膜太陽能電池之結構…………………- 20 - 第四章 TCAD模擬軟體之應用……………………………- 22 - 4-1 TCAD(Technology Computer Aided Design)…- 22 - 4-1-1 TCAD模擬軟體簡介………………………………- 22 - 4-1-2 物理模型之引入…………………………………- 24 - 4-2 Sentaurus TCAD之奈米柱太陽電池模擬與設計流程 ……………………………………………………- 28 - 第五章 實驗與結果………………………………………- 32 - 5-1 非晶矽太陽能電池之參數設定…………………- 32 - 5-2 非晶矽薄膜太陽能電池之模擬探討……………- 35 - 5-2-1 非晶矽薄膜太陽能電池之設計與模擬…………- 35 - 5-2-1-1 變吸收層厚度……………………………………- 36 - 5-2-1-2 變動p層厚度及n層厚度…………………………- 36 - 5-3 非晶矽奈米柱太陽能電池之設計………………- 38 - 5-3-1 二維結構與三維結構的非晶矽nanowall p-i-n太陽電池之 比較………………………………………………- 38 - 5-3-2 三維結構之非晶矽nanorod-typeI p-i-n太陽能電池之設 計…………………………………………………- 41 - 5-4 非晶矽nanorod-typeII p-i-n太陽能電池之模擬 ……………………………………………………- 43 - 5-4-1 變動nanorod-typeII吸收層厚度………………- 44 - 5-4-2 變動nanorod-typeII之n型區域的直徑……… - 48 - 5-4-3 變動nanorod-typeII之柱長……………………- 50 - 第六章 結論與未來工作………………………………… - 52 - 第七章 著作……………………………………………… - 53 - 參考文獻 ……………………………………………………- 54 - 附錄A ……………………………………………………… - 57 -zh_TW
dc.language.isoen_USzh_TW
dc.publisher光電工程研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1206200916184800en_US
dc.subject太陽電池zh_TW
dc.subjectsolar cellen_US
dc.subject奈米柱zh_TW
dc.subjectnanoroden_US
dc.titleDesign and Analysis on Nanorods Thin-Film Solar Cellen_US
dc.title新型奈米柱薄膜太陽能電池之設計與分析zh_TW
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:光電工程研究所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.