Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorChung-Yuan Kungen_US
dc.contributor.authorChiang, Peng-Weien_US
dc.identifier.citation[1] 林永昇 儀科中心71期 [2] 五南出版社 有機與塑膠太陽能電池 [3] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda and J. H. Harding ,J. Mater. Chem., 15 139–148 (2005) [4] Huang MH, Mao D, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R , Yang P, SIENCE 292, 1897, 2001. [5] 林素霞,博士論文,”氧化鋅薄膜特性改良與應用”,國立成功大學材料科學研究所(2003). [6] Triboulet R, PROC. SPIE 1-8, 4412, 2001. [7] C. Barrett, T. B. Massalski, “Structure of Metals 3rd revised edition: Crystallographic Methods, Principles, and Data”, International Series on Materials Science and Technology, 35(1987). [8] 張修誠,郭正次 ”鋁薄膜輔助常溫水溶液法製備氧化鋅奈米結構之製程及其性質”,國立交通大學碩士論文,民國九十七年 [9] E. S. Kim, and R. S. Muller ─IC-processed piezoelectric microphone,∥ IEEE electron device lett., 8 467-468 (1987) [10] 吳金寶,”氧化鋁鋅(AZO)透明導電薄膜技術發展與應用”,工業材料雜誌(2008). [11] Jin-Hong Lee, Byung-Ok Park , Thin Solid Films, 426, 94 (2003) [12] D.J. Park, J.Y. Lee, D.C. Kim, S.K. Mohanta, and H.K. Cho, Appl. Phys Lett.,91,143115(2007). [13] Y.Ding, P.X. Gao,and Z.L. Wang, J.Am. Chem. Soc.,126,2066(2004) [14] J.J. Wu and S.C. Liu, J. Phys. Chem. B, 106,9546(2002) [15] Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science, 291,1947(2001) [16] R.M. Wang, Y.J. Xing, J. Xu, and D.P. Yu, New J. Phys.,5,1151(2003) [17] P.X. Gao and Z.L. Wang, J. Phys. Chem., B 108, 7534(2004) [18] M. Law, D.J. Sirbuly, J.C. Johnson, J. Goidbberger, R.J. Saykally, and P. Yang, Science, 305, 1269(2004) [19] Janson B. Baxter, and Eray.S. Aydil, Appl. Phys. Lett., 86, 053114(2005) [20] M. Gao, W.Li, Y. Liu, Q. Li, Q. Chen and L.M. Peng, Appl. Phys. Lett., 92, 113112(2008) [21] Z. Fan and J.G. Lu, Appl. Phys. Lett., 86, 123510(2005) [22] Vayssiers L , ADV. MATER. 15 , 464 ,(2003). [23] L.Vayssieres, K. Keis, A. Hagfeldt, and S. Lindquist ∥Three-dimensional array of highly oriented crystalline ZnO microtubes,∥ Chem. Mater., 13 4395-4398 (2001) [24] Govender K , Boyle DS , O’ Brien P , Binks D , West D , Coleman D , ADV. MATER. 14 , 1221 , (2002) [25] L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P.Yang ∥Low-temperature wafer-scale production of ZnO nanowire arrays,∥ Angew. Chem. Int., 42 3031–3034 (2003) [26] K. Govender, D.S. Boyle, P.B. Kenway, and P. O’Brien ” Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,∥ J . Mater . Chem., 14 2575–2591 (2004) [27] R.S. Wanger, W.C. Ellis, Appl. Phys. Letters 4 , 89(1964) [28] 交大出版社 半導體元件物理與製作技術 施敏 [29] 莊佑豪,林永仁 “ 水溶液法製備氧化鋅薄膜及其光學特性研究”,大同大學碩士論文,民國九十八年 [30] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell” Nature 1976(261) 402 [31] M. Gatzel,“Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” J. Photochem. & Photobio. A: Chem., 164 (2004) 3-14. [32] Nick Vlachopoulos, Paul Liska, Jan Augustynski, and Michael Gratzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc. 110(1988) 1216 [33] M. Gatzel,“Powering the planet”,Nature 403(2000)363. [34] A.Hageldt, M. Gatzel,“Light Induced Redox Reactions in Nanocrystalline Systems”Chem. Rev. 95,49,(1995). [35] K Tennakone et al., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex” J. Phys. D: Appl. Phys. 1998(31) 1492-1496. [36] M. K. Nazeeruddin, P. Pĕchy and M Gratzel, “Efficient panchomatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex” Chem. Comm. 1997 1705-1706. [37] J.Nelson,“Organic photovoltaic films”,Mater.Today(2002)20-27. [38] P.Wang et al.,Nature Mater. (2002)20 [39] Tan et al.“Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells”,Langmuir20(2004)2934. [40] B.Pradhan and A.J. Pal,“Organic heterojunction photovoltaic cells: role of functional groups in electron acceptor materials”solar Energy Mater. &Solar cell 2004(81) 469-471. [41] D.Gebeyehu,CJ.Brabec and N.S.Sariciftci,“Solid-state organicyinorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes”,Thin Solid Films 403-404(2002)271-274. [42] K Tennakone et al.,“A solid state PV cell sensitized with Ru Bipyridyl complex”J.Phys.D:Appl.Phys.31(1998)1492-1496. [43] P.Wang, Shaik M. Zakeeruddin, Jacques-E. Moser, and Michael Gratzel, J. Phys. Chem. B, 2003, 107 (48), pp 13280–13285. [44] M. Gatzel,“Mesoporous oxide junctions and nanostructured solar cells”,Current Opinion in Colloid &Interface Science., 4(4), 314-321(1999). [45] K.kalyanasundaram and M. Gatzel,“Applications of functionalized transition metal complexes in photonic and optoelectronic devices”coord.chem.Rev.77(1998)347. [46] 角野 裕康, 村井 伸次, 御子柴 智,“Dye-sensitized solar cells using solid electrolytes” 東芝レビュー 2001(56) 7-10. [47] A Hagfeldt et al., “A new method for manufacturing nanostructured electrodes on plastic substrates” Nano Letters 2001(1) 97-100. [48] K. Hara et al., “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6 %” Chem. Comm.(2001)569-570. [49] W Kubo et al., “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator” Chem. Comm.(2002)374-375. [50] 原浩二郎, “有機色素増感太陽電池で変換効率7.5%の世界最高性能を達成”,AIST Today 2002(12) 14. [51] K Tennakone et al., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex” J. Phys. D: Appl. Phys. 1998(31) 1492-1496. [52] M Gratzel, “Conversion of sunlight to electric power by nanocrystalline DSSCs”,J. Photochem. & Photobio. A: Chem. 2004(164) 3-14. [53] C. Barrett, T. B. Massalski, “Structure of Metals 3rd revised edition: Crystallographic Methods, Principles, and Data”, International Series on Materials Science and Technology, 35(1987) [54] Qingwei Li a, Jiming Bian a,*, Jingchang Sun b, Jingwei Wanga, Yingmin Luo a, Kaitong Sun a, Dongqi Yu b, Applied Surface Science 256 (2010) 1698–1702 [55] T. Prasada Rao *, M.C. Santhoshkumar,Applied Surface Science ,255, 4579 (2009). [56] I. Hamberg,physical Review B, 30,3240(1984). [57] Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, and Jr-Yau Fang 奈米通訊第十二卷第二期 [58] 賴致遠,吳季珍 ”化學浴沉積法合成氧化鋅奈米線及其特性分析” 國立成功大學碩士論文,民國九十五年 [59] Thavasi , V. ; Renugopalakrishnan , V . ;Jose , R. ; Ramakrishna , S. Materials Science and Engineering : R : Reports 2009 , 63 , 81-99. [60] Qingwei Li a, Jiming Bian a,*, Jingchang Sun b, Jingwei Wanga, Yingmin Luo a, Kaitong Sun a, Dongqi Yub, Applied Surface Science 256 (2010) 1698–1702.zh_TW
dc.description.abstractThe analysis is mainly aimed at transforming Zno nanorods to array on the ITO substrate by Chemical Bath Deposition (CBD), and utilizing for the electrode pole of Dye-sensitized solar cells (DSSC). This investigation would help us in evaluating how three different kinds of catalysts (NaOH, NH4OH and HMT) and their respective reaction time (3, 6 and 9 hours) have an influence on the composition of Zno nanorods, superficial micro structure, optical and photo electricity attribution.The nanorods are grown with three kinds of catalysts is at wurtzite structure composition category, and to be provided with the characteristic of C axis (002) orientation. The nanorods grown with HMT has greater growth rate and aspect ratio, whilst the reaction time increases, the length of nanorods goes up correspondingly. According to PL analysis, the intensity of ultraviolet of Zno nanorods escalates with the rising reaction time. It was observed that as the reaction time increases, the crystalline of Zno nanorods gets stronger, which further results in an effect of enhanced intensity of ultraviolet.In addition it was noted that, the lattice structure of nanorods transformed with NaOH has the worst outcome. Furthermore, it also runs short of oxygen defects at most. With view point of DSSC, the Zno nanorods transformed with HMT has better efficiency on converting photoelectricity, and accounts for 0.644 percent. Due to its greater aspect ratio, and better dye attachment, the current and converted efficiency possesses better performance. However, the Voc and F.F. does not rise up with respect to the reaction time which concludes that the loop resistance does not increase with the nanorods aspect ratio accordingly. Therefore, it could be concluded that the nanorods has greater electricity attribution.en_US
dc.description.abstract本研究主要利用化學浴沉積法(Chemical Bath Deposition, CBD) 製備氧化鋅奈米柱陣列於ITO基板上,作為染料敏化太陽能電池(DSSC)之工作電極,並探討三種不同催化劑(NaOH、NH4OH及HMT)及反應時間(3小時、6小時及9小時)對氧化鋅奈米柱之晶格結構、表面微結構、光學特性及光電特性的影響。結果顯示,使用三種催化劑成長之奈米柱皆屬於六角纖鋅塊結構,具有C軸(002)優選排向之特性。使用HMT催化劑成長之氧化鋅奈米柱具有較大之成長速率及高寬比值,反應時間增加時,奈米柱長度也會隨著反應時間增長。從PL分析結果顯示,氧化鋅奈米柱之紫外光(UV)強度會隨反應時間增加而增強,這是因為當反應時間越長時,氧化鋅奈米柱結晶性越好而導致紫外光強度增加。另外,使用NaOH所製備而成的奈米柱結晶性最差,而氧空缺缺陷也是最多的。在染敏太陽能電池應用分析方面,使用HMT製備之奈米柱製作之染敏太陽能電池效率具有較高之光電轉換效率為0.646 %,這是因為HMT奈米柱的寬高比值最大,染料吸附量最高,因此具有較高之光電流及轉換效率。然而開路電壓(Voc)與填充係數(F.F)並沒有隨著反應時間而改變,表示迴路電阻並沒有因為奈米柱高寬比增加而變大,表示奈米柱具有良好的電性。zh_TW
dc.description.tableofcontents總目錄 第一章 緒論 1 1-1前言 1 1-2太陽能電池 1 1-3研究動機 4 第二章文獻回顧 5 2-1氧化鋅簡介 5 2-1.1二維氧化鋅結構 9 2-1.2氧化鋅一維結構 10 2-2成長氧化鋅一維奈米結構之方法 10 2-3 溶膠-凝膠法(Sol-Gel)概述 19 2-3.1氧化鋅薄膜製備方式 19 2-3.2溶膠-凝膠法(Sol-Gel)原理 20 2-3.3溶膠凝膠法製備成膜的方法 22 2-3.4退火處理 24 2-4染敏太陽能電池 24 2-4.1染敏太陽能電池的演進 24 2-4.2染敏太陽能電池的工作原理 25 2-4.3染料敏化劑 28 第三章實驗步驟與研究方法 30 3-1 實驗流程圖 30 3-2 實驗之化學藥品 31 3-3 分析設備 32 3-3.1 X光繞射分析儀 32 3-3.2 FE-SEM場發掃描式電子顯微鏡 33 3-3.3螢光光譜儀(UV-VIS) 34 3-3.4光激發螢光(Photoluminescence, PL) 35 3-3.5太陽能電池I-V曲線量測儀器 36 3-4實驗設計 37 3-5實驗方法 37 3-5.1 ZnO溶凝膠調配 37 3-5.2製備奈米線溶液調配 37 3-5.3基板前處理 38 3-5.4旋轉塗佈法製備氧化鋅晶種層 39 3-5.5奈米柱製備 40 3-5.6電解質溶液調配 43 3-5.7元件封裝製程 43 第四章結果與討論 45 4-1氧化鋅奈米柱結構分析 45 4-1.1 SEM分析 45 4-1.2 XRD分析 50 4-2氧化鋅奈米柱光電特性分析 54 4-2.1 UV-VIS分析 54 4-2.2 PL分析 59 4-3 IV分析 62 第五章結論 66 第六章參考文獻 67   表目錄 表1- 1太陽能電池分類 3 表2- 1氧化鋅基本特性[5] 6 表2- 2 JCPDS ZnO晶相 7 表4- 1 ZnO奈米柱使用不同催化劑與反應時間關係表(a)長度變化(b直徑變化50 表4- 2不同催化劑之能隙與反應時間變化關係表 59 表4- 3不同催化劑之氧化鋅奈米柱IV關係表(a)3小時(b)6小時(c)9小時 65   圖目錄 圖2- 1六角最密堆積(a)平面圖(b)立體圖[7] 8 圖2- 2一維結構ZnO 11 圖2- 3氧化鋅陣列 14 圖2- 4在不同過飽和度下氧化鋅的成長型態結構圖 15 圖2- 5化學氣相沉積法的五大機制 16 圖2- 6VLS成長一維結構示意圖 18 圖2- 7溶膠-凝膠變化示意圖 21 圖2- 8浸泡法示意圖 23 圖2- 9旋轉塗佈法示意圖 24 圖2- 10染敏太陽能電池基本結構示意圖 26 圖2- 11染敏太陽能電池的工作示意圖 27 圖2- 12為不同濃度成長之氧化鋅奈米線(a)12.5mM (b)25mM (c)37.5mM (d)50mM。成長溫度95℃時間5hr 29 圖3-1實驗流程圖 30 圖3- 2X光繞射儀(型號為Rigaku PC-2000) 33 圖3- 3UV-VIS-NIR光譜儀型號為Jasco V-670 35 圖3- 4 I-V曲線量測示意圖 36 圖3- 5溶凝膠調配流程圖 38 圖3- 6調配CBD溶液之流程圖 39 圖3- 7ZnO晶種層流程示意圖 40 圖3- 8利用CBD法成長奈米柱示意圖 41 圖3- 9成長後奈米線示意圖 42 圖3- 10電解質溶液配置流程圖 42 圖3- 11元件封裝示意圖 43 圖3- 12封裝流程圖 44 圖4- 1成長溫度95℃,濃度20mM,成長時間3小時,各自的平面圖與剖面圖,(a),(b)為NaOH ; (c),(d)為NH4OH ; (e),(f)為HMT 47 圖4- 2成長溫度95℃,濃度20mM,成長時間6小時,各自的平面圖與剖面圖,(g),(h)為NaOH ; (i),(j)為NH4OH ; (k),(l)為HMT 48 圖4- 3成長溫度95℃,濃度20mM,成長時間9小時,各自的平面圖與剖面圖,(m),(n)為NaOH ; (o),(p)為NH4OH ; (q),(r)為HMT 49 圖4- 4不同催化劑之時間成長結晶分析(a) NaOH (b) NH4OH (c) HMT 52 圖4- 5不同催化劑之相同反應時間比較(a)3小時(b)6小時(c)9小時 53 圖4- 6不同催化劑的染料前與染料後穿透率的比較,左為染料前;右為染料後,(a)3小時(b)6小時(c)9小時 56 圖4- 7不同催化劑染料後吸收率的比較(a)3小時(b)6小時(c)9小時 57 圖4- 8不同催化劑生長奈米柱之能隙變化(a)NaOH(b)NH4OH(c)HMT 58 圖4- 9不同催化劑之氧化鋅奈米柱PL圖(a)3小時(b)6小時(c)9小時 61 圖4- 10不同催化劑之氧化鋅奈米柱IV圖(a)3小時(b)6小時(c)9小時 64zh_TW
dc.titleEffects of different catalysts on the growth of ZnO nanorods for the application of dye-sensitized solar cellsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:光電工程研究所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.