Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorMin-Hung Leeen_US
dc.contributor.advisorZingway Peien_US
dc.contributor.authorHuang, Hui-Chenen_US
dc.identifier.citation[1] D. F. Babbe, C. R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals,” J. Phys. Chem. Solids., vol. 31, pp. 2679-2687 (1970). [2] Hideksi Hirakawa, Edwin J. Louis, Alan G. MacDiarmid, Chwan K. Chiang, and Alan J. Heeger, “Synthesis of electrically conducting organic polymers halogen derivatives of polyacetylene (CH)Synthesis of electrically conducting organic polymers halogen derivatives of polyacetylene,” J.C.S. Chem. Comm., pp.578-580 (1977). [3] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, “Electrical Conductivity in Doped Polyacetylene,” Phys. Rev. Lett., vol. 39, pp. 1098-1101 (1977). [4] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” J. Appl. Phys., vol. 54, pp. 3255- 3259 (1983). [5] Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett. ,vol. 49, pp. 1210-1212 (1986). [6] H. Koezuka, A. Tsumura, T. Ando, “Field-effect transistor with polythiophene thin film,” Synthetic Metals, vol. 18, pp. 699-704 (1987). [7] Gilles Horowitz, Denis Fichou, Xuezhou Peng, Zhigang Xu, Francis Garnier “A field-effect transistor based on conjugated alpha-sexithienyl,” Solid State Communications, vol. 72, pp. 381-384 (1989). [8] Gilles Horowitz, Xuezhou Peng, Denis Fichou, and Francis Garnier, “The oligothiophene-based field-effect transistor How it works and how to improve it,” J. Appl. Phys., vol.67, pp.528-532 (1990). [9] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, pp. 183-185 (1986). [10] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. , vol. 51, pp. 913- 915(1987). [11] Lin, Y.-Y., Gundlach, D.J., Nelson, S.F., Jackson, T.N., “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, vol.18, pp.606-608 (1997). [12] Lisong Zhou, Sungkyu Park, Bo Bai, Jie Sun, Sheng-Chu Wu, Jackson, T.N. , Nelson S. , and Freeman D. , Yongtaek Hong, “Pentacene TFT driven AM OLED displays,” Electron Device Letters, IEEE, vol. 26, pp. 640-642 (2005). [13] Lisong Zhou, Alfred Wanga, Sheng-Chu Wu, Jie Sun, Sungkyu Park, and Thomas N. Jackson, “All-organic active matrix flexible display,” Appl. Phys. Lett. ,vol. 88, pp. 083502 (2006). [14] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, “Pentacene-based radio-frequency identification circuitry,” Appl. Phys. Lett. ,vol. 82, pp. 3964-3966 (2003). [15] Thomas N. Jackson, Yen-Yi Lin, David J. Gundlach, “Organic thin-film transistors for organic light-emitting flat-panel display backplanes,” IEEE J Sel Top Quant Electron, vol.4, pp. 100-104 (1998). [16] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell and D. D. C. Bradley, “Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase,” Appl. Phys. Lett. , vol. 77, pp. 406-408 (2000). [17] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, “ Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, vol. 401, pp. 685-688 (1999). [18] F. Stassen, R. W. I. de Boer, N. N. Iosad, and A. F. Morpurgo, “Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors,” Appl. Phys. Lett. , vol. 85, pp. 3899-3901 (2004). [19] S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, “Temperature-independent transport in high-mobility pentacene transistors,” Appl. Phys. Lett. , vol. 72, pp. 1854-1856 (1998). [20] Jin Jang and Seung Hoon Han, “High-Performance OTFTs on Flexible Substrate,” SID Digest, sec. 3.2, pp. 10-13 (2005). [21] IEK, “Future Applications and Opportunities of Flexible Electronics,” ITIS of Ministry of Economic Affairs, pp. 2.4 (2005). [22] Dr Peter Harrop and Raghu Das, “Detailed 20 year forecasts across the full breadth of applications of organic semiconductors,” IdtechEx report (2005). [23] Christine C. Mattheus, Anne B. Dros, Jacob Baas, Auke Meetsma, Jan L. de Boer and Thomas T. M. Palstra, “Polymorphism in pentacene,” Acta Crystallogr. Sect. C-Cryst. Struct. Commun. , vol. 57, pp. 939-941 (2001). [24] Sandra E. Fritz, Stephen M. Martin, C. Daniel Frisbie, Michael D. Ward, and Michael F. Toney, “Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction,” J. Am. Chem. Soc., vol. 126, pp. 4084-4085 (2004). [25] Hiroyuki Yoshida, Katsuhiko Inaba, and Naoki Sato, “X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene,” Appl. Phys. Lett. , vol. 90, pp. 181930 (2007). [26] W. Brutting, “Physics of Organic Semiconductors,” WILEY-VCH, pp.3 (2005). [27] R. B. Campbell, J. M. Robertson and J. Trotter, “The crystal and molecular structure of pentacene,” Acta Cryst. , vol. 14, pp. 705-711 (1961). [28] Daniel Holmes, Sriram Kumaraswamy, Adam J. Matzger, K. Peter C. Vollhardt, “On the Nature of Nonplanarity in the [N]Phenylenes,” Chem. Eur. J. , vol. 5, pp. 3399-3412 (1999). [29] Christine C. Mattheus, Anne B. Dros, Jacob Baas, Gert T. Oostergetel, Auke Meetsma, Jan L. de Boer, Thomas T. M. Palstra, “Identification of polymorphs of pentacene,” Synthetic Metals, vol. 138, pp. 475-481 (2003). [30] R. B. Campbell and J. Monteath Robertson, and J. Trotter, “The crystal structure of hexacene, and a revision of the crystallographic data for tetracene,” Acta Cryst. , vol. 15, pp. 289-290 (1962). [31] H iroyuki Yoshida, and Naoki Sato, “Grazing-incidence x-ray diffraction study of pentacene thin films with the bulk phase structure,” Appl. Phys. Lett. ,vol. 89, pp. 101919 (2006). [32] J. S. Wu and J. C. H. Spence, “Electron diffraction of thin-film pentacene,” J. Appl. Cryst. ,vol. 37, pp. 78-81 (2004). [33] K. Doi, K. Yoshida, H. Nakano, A. Tachibana, T. Tanabe, Y. Kojima and K. Okazaki, “Ab initio calculation of electron effective masses in solid pentacene,” J. Appl. Phys. vol. 98, pp. 113709 (2005). [34] Toshiyuki Kakudate and Noriyuki Yoshimoto, Yoshio Saito, “Polymorphism in pentacene thin films on SiO2 substrate,” Appl. Phys. Lett., vol. 90, pp. 081903 (2007). [35] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, and B. Batlogg, A. N. Rashid, G. Schitter, “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator,” J. Appl. Phys. , vol. 96, pp. 6431-6438 (2009). [36] Sandra E. Fritz, Stephen M. Martin, C. Daniel Frisbie, Michael D. Ward, and Michael F. Toney, “Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction,” J. Am. Chem. Soc., vol. 126, pp. 4084-4085 (2004). [37] Tzung-Fang Guo, Zen-Jay Tsai, Shi-Yu Chen, Ten-Chin Wen, and Chia-Tin Chung, “Influence of polymer gate dielectrics on n-channel conduction of pentacene-based organic field-effect transistors,” J. Appl. Phys., vol. 101, pp. 124505 (2007). [38] Lay-Lay Chua, Jana Zaumseil1, Jui-Fen Chang, Eric C.-W. Ou, Peter K.-H. Ho, Henning Sirringhaus1 and Richard H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors,” Nature, vol. 434, pp. 194-199 (2005). [39] Th. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci, “High-Performance Ambipolar Pentacene Organic Field-Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric,” Adv. Mater., vol. 17, pp. 2315-2320 (2005). [40] A Kahn, N. Koch, W. Gao, “Electronic Structure and Electrical Properties of Interfaces between Metals and -Conjugated Molecular Films,” J. Polym. Sci. B, Polym. Phys., vol. 41, pp. 2529-2548 (2003). [41] E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van Veenendaal, D. M. de Leeuw, and T. M. Klapwijk, ”Dopant density determination in disordered organic field-effect transistors,” J. Appl. Phys., vol. 93, pp. 4831-4835 (2003). [42] Gilles Horowitz, Riadh Hajlaoui, Habib Bouchriha, Ramzi Bourguiga, Mohcen Hajlaoui, “The Concept of Threshold Voltage in Organic Field-Effect Transistors,” Adv. Mater., vol. 10, pp. 923-927 (1998). [43] G. Hadziioannou and P.F. van Hutten, “Semiconducting Polymers: Chemistry, Physics and Engineering,” WILEY-VCH, pp. 471 (1999). [44] Gilles Horowitz, Riadh Hajlaoui, and Philippe Delannoy, “Temperature Dependence of the Field-Effect Mobility of Sexithiophene. Determination of the Density of Traps,” J. Phys. III France, vol. 5, pp. 355-371 (1995). [45] M. C. J. M. Vissenberg, and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Phys. Rev. B, vol. 57, pp. 12964-12967 (1998). [46] Soeren Steudel, Stijn De Vusser, Stijn De Jonge, Dimitri Janssen, Stijn Verlaak, Jan Genoe, and Paul Heremans, “Influence of the dielectric roughness on the performance,” Appl. Phys. Lett., vol. 85, pp. 4400-4402 (2004). [47] D. Knipp, R. A. Street, A. Vo¨ lkel, and J. Ho, “Pentacene thin film transistors on inorganic dielectrics Morphology, structural properties, and electronic transport,” J. Appl. Phys., vol. 93, pp. 347-355 (2003). [48] Sandra E. Fritz, Tommie Wilson Kelley, and C. Daniel Frisbie, “Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer,” J. Phys. Chem. B, vol.109, pp.10574-10577 (2005). [49] Tommie Wilson Kelley, Larry D. Boardman, Timothy D., “High-Performance OTFTs Using Surface-Modified Alumina Dielectrics,” J. Phys. Chem. B, vol. 107, pp. 5877-5881 (2003). [50] Wolfgang Kalb, Philippe Lang, Mohamad Mottaghi, Herv´e Aubin, Gilles Horowitz, Matthias Wuttig, “Structure-performance relationship in pentacene Al2O3 thin-film transistors,” Synth. Met., vol.146, pp. 279-282 (2004). [51] IUPAC, “Glossary of Basic Terms in Polymer Science”, Pure Appl. Chem., vol. 68, pp. 2287-2311 (1996). [52] Bin Zhao and William J. Brittain “Synthesis of Tethered Polystyrene-block-Poly(methyl methacrylate) Monolayer on a Silicate Substrate by Sequential Carbocationic Polymerization and Atom Transfer Radical Polymerization,” J. Am. Chem. Soc., vol. 121, pp. 3557-3558 (1999). [53] P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, “Controlling Polymer-Surface Interactions with Random Copolymer Brushes,” Science, vol. 275, pp. 1458-1460 (1997). [54] S. T. Milner, “Polymer Brushes,” Science, vol. 251, pp. 905-914 (1991). [55] Rigoberto C. Advincula, William J. Brittain,Kenneth C. Caster, Jurgen Ruhe, “Polymer Brushes ,” WILEY-VCH, pp. 1-41 (2004). [56] B. Zhao, W.J. Brittain, “Polymer brushes: surface-immobilized macromolecules,” Prog. Polym. Sci.,vol. 25, pp. 677-710 (2000). [57] D. G. Walton, G. J. Kellogg, A. M. Mayes, P. Lambooy, and T. P. Russell, “A Free Energy Model for Confined Diblock Copolymers ,” Macromolecules, vol. 27, pp. 6225- 6228 (1994). [58] G. J. Kellogg, D. G. Walton, A. M. Mayes, P. Lambooy, T. P. Russell, P. D. Gallagher and S. K. Satija, “Observed Surface Energy Effects in Confined Diblock Copolymers,” Phys. Rev. Lett. , vol. 76, pp. 2503 - 2506 (1996). [59] Angus I. Kingon, Jon-Paul Maria and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, vol. 406, pp. 1032-1038 (2000). [60] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J. M. Shaw, “Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators,” Science, vol. 283, pp. 822-824 (1999). [61] Yoshiki Iino, Youji Iioue, Yoshihide Fujisaki, Hideo Fujikake, Hiroto Sato, Masahiro Kawakita, Shizuo Tokito, and Hiroshi Kikuchi, “Organic Thin-Film Transistors on a Plastic Substrate with Anodically Oxidized High-Dielectric-Constant Insulators,” Jpn. J. Appl. Phys., vol. 42 pp. 299-304 (2003). [62] Jiyoul Lee, J. H. Kim, and Seongil Im, “Pentacene thin-film transistors with Al2O3 + x gate dielectric films deposited on indium-tin-oxide glass,” Appl. Phys. Lett., vol. 83, pp. 2689-2691 (2003). [63] S.J. Kang, K.B. Chung, D.S. Park, H.J. Kim, Y.K. Choi, M.H. Jang, M. Noh, C.N. Whang, “ Fabrication and characterization of the pentacene thin film transistor with a Gd2O3 gate insulator,” Synth. Met.,vol.146 ,pp.351-354 (2004). [64] L A Majewski, R Schroeder and M Grell, “Flexible high capacitance gate insulators for organic field effect transistors,” J. Phys. D: Appl. Phys., vol. 37,pp. 21-24 (2004). [65] Leszek Artur Majewski, Raoul Schroeder, and Martin Grell, “One Volt Organic Transistor,” Adv. Mater., vol. 17, pp. 192-196 (2005). [66] C. Boulas, J. V. Davidovits, F. Rondelez, and D. Vuillaume, “Suppression of Charge Carrier Tunneling through Organic Self-Assembled Monolayers,” Phys. Rev. Lett., vol. 76, pp. 4797-4800 (1996). [67] J. Collet and D. Vuillaume, “Nano-field effect transistor with an organic self-assembled monolayer as gate insulator,” Appl. Phys. Lett., vol. 73, pp. 2681-2683 (1998). [68] K. Bierbaum, M. Kinzler, Ch. Woell, M. Grunze, G. Haehner, S. Heid, and F. Effenberger, “A Near Edge X-ray Absorption Fine Structure Spectroscopy and X-ray Photoelectron Spectroscopy Study of the Film Properties of Self-Assembled Monolayers of Organosilanes on Oxidized Si(100),” Langmuir, vol.11, pp. 512-518 (1995). [69] P. Silberzan, L. Leger, D. Ausserre, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir, vol. 7, pp. 1647-1651 (1991). [70] Reena Banga, Jack Yarwood, Anthony M. Morgan, Brian Evans, and Jaqueline Kells, “FTIR and AFM Studies of the Kinetics and Self-Assembly of Alkyltrichlorosilanes and (Perfluoroalkyl)trichlorosilanes onto Glass and Silicon,” Langmuir, vol. 11, pp. 4393-4399 (1995). [71] Stephen R. Wasserman, Yu Tai Tao, and George M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir, vol. 5, pp. 1074-1087 (1989). [72] K.P. Pernstich, C. Goldmann, C. Krellner, D. Oberhoff, D.J. Gundlach, B. Batlogg, “Shifted transfer characteristics of organic thin film and single crystal FETs,” Synth. Met., vol. 146, pp. 325-328 (2004). [73] Marcus Halik, Hagen Klauk, Ute Zschieschang, Gu¨ nter Schmid, Christine Dehm, Markus Schutz, Steffen Maisch, Franz Effenberger, Markus Brunnbauer, and Francesco Stellacci, “Low-voltage organic transistors with an amorphous molecular gete dielectric,” Nature, vol. 431, pp. 963-966 (2004). [74] Tommie Wilson Kelley, Larry D. Boardman, Timothy D. Dunbar, Dawn V. Muyres, Mark J. Pellerite, and Terry P. Smith, “High-Performance OTFTs Using Surface-Modified Alumina Dielectrics,” J. Phys. Chem. B, vol. 107, pp. 5877-5881 (2003). [75] Hagen Klauk, Ute Zschieschang, Jens Pflaum, and Marcus Halik, “Ultralow-power organic complementary circuits,” Nature, vol. 445, pp. 745-748 (2007). [76] Christos D. Dimitrakopoulos, Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Adv. Mater. ,vol. 14, pp. 99-117 (2002). [77] Tsung-Syun Huang, Yan-Kuin Su, and Po-Cheng Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer,” Appl. Phys. Lett., vol. 91, pp. 092116 (2007). [78] Tommie W. Kelley, Dawn V. Muyewa, Paul, F. Baude, Terry P. Smith, and Todd D. Jones, “High Performance Organic Thin Film Transistors,” Mat. Res. Soc. Symp. Proc., vol. 771, pp. L6.5. [79] Tomie W. Kelley, Paul F. Baude, Chris Gerlach, David E. Ender, Dawn Muyres, Michael A. Haase, Dennis E. Vogel, and Steven D. Theiss, “Recent Progress in Organic Electronics: Materials, Devices, and Processes,” Chem. Mater., vol. 16, pp. 4413-4422 (2004). [80] Ch. Kloc, P. G. Simpkins, T. Siegrist, R. A. Laudise, “Physical vapor growth of centimeter-sized crystals of α-hexathiophene,” J. Cryst. Growth ,vol. 182, pp. 416-427 (1997). [81] Iwao Yagi, Kazuhito Tsukagoshi, Yoshinobu Aoyagi, “Growth control of pentacene films on SiO2/Si substrates towards formation of flat conduction layers,” Thin Solid Films, vol. 467, pp.168- 171 (2004).zh_TW
dc.description.abstract在本實驗中,共聚合物(PS-r-PMMA)被用來當作有機電晶體的絕緣層。共聚合物可以利用簡單的旋轉塗佈的方式均勻地沈積薄膜在含有氫氧基的基板上。再經過烤板加熱,具有官能基的共聚合物將會附著於基板上的氫氧基上,形成像刷子般聚合物膜。之後,再藉由甲苯的沖洗移除沒有反應餘留的共聚合,形成平坦的薄膜。我們可以利用加熱與沖洗的方式去控制薄膜的厚度,這樣的方式也是很有潛力去發展大面積和低成本的製程,像是噴墨印刷,狹縫式塗佈,刮刀法…等。利用共聚物為絕緣層,在烘烤溫度為190°C,150°之下的有機電晶體成功的被製做出來,操作電壓皆小於5V,而次臨界擺伏皆小於0.3 V/dec。zh_TW
dc.description.abstractIn this work, a random copolymer, PS-r-PMMA, is used as dielectric layer for a pentacene OTFT. The PS-r-PMMA dielectric can be uniformly coated on the surface with hydroxyl groups in a very simple spin coating process. After thermal annealing, a layer of end-functionalized PS-r-PMMA will graft to the OH- group forming polymer brushes. Then dipped samples are in toluene in order to remove the residue PS-r-PMMA, forming a flat and thin film of a few nanometers. We can take advantage of annealing process and rinsing by toluene for thickness control. By means of annealing and rinsing process, PS-r-PMMA has the potential to use in large-are and low-cost fabrication, such as inkjet printing, slot coating, doctor blade. The pentacene-based OTFTs with annealing temperature at 190C, 150C were successfully demonstrated, exhibiting operation voltage as low as 5V and S.S is smaller than 0.3 V/dec.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii List of Figures vi List of Tables viii Chap 1 Introduction 1 1.1 Introduction of organic semiconductor 1 1.2 Flexible electronics 3 1.3 Motivation 5 1.4 Thesis outline 6 Chap 2 Fundamentals of Organic Semiconductor and Thin Film Transistor 7 2.1 Pentacene 7 2.1.1 Structure 7 2.1.2 P-type semiconductor 10 2.2 Operating mode 11 2.3 Parameter Extraction 12 2.3.1 Mobility extraction 12 2.3.2 Threshold voltage extraction 13 2.3.3 Subthreshold swing extraction 14 2.3.4 On/off ratio extraction 15 2.4 Carrier transport model 15 2.7.1 Multiple trapping and release model 15 2.7.2 Hopping model 16 2.5 Interface 17 2.6 PS-r-PMMA 21 2.7.1 Classification of copolymer 21 2.7.2 Synthesis of polymer brushes 23 2.7.3 Synthesis of PS-r-PMMA 24 2.7 Low-voltage methods 26 2.7.1 High k dielectric layer 27 2.7.2 Thin film dielectric layer 29 Chap 3 Experiment 33 3.1 Cleaning method 33 3.1.1 Simplified RCA clean for glass 33 3.1.2 Simplified RCA clean for silicon wafer 33 3.2 Formation of PS-r-PMMA dielectric 34 3.3 The process of metal-insulator-metal 35 3.4 Fabrication of pentacene based OTFT 38 3.5 Introduce the experiment equipment 42 3.5.1 Glove box 42 3.5.2 Spin coater 42 3.5.2 Thermal evaporator 43 Chap 4 Results and Discussion 45 4.1 The physical properties of the dielectric film 45 4.1.1 Brush thickness 45 4.1.2 Contact angle 51 4.1.3 Surface morphology 51 4.2 The electrical properties of the dielectric film 56 4.3 The electrical properties of the devices 59 Chap 5 Conclusions 64 Chap 6 Future work 65 Chap 7 References 66zh_TW
dc.subjectlow voltageen_US
dc.titleStudy on Low-Voltage OTFT by Using Copolymer as The Dielectric Layeren_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:光電工程研究所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.