Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2959
DC FieldValueLanguage
dc.contributor康宗貴zh_TW
dc.contributor林佳鋒zh_TW
dc.contributor.advisor汪芳興zh_TW
dc.contributor.author李沇憲zh_TW
dc.contributor.authorLee, Yen-Hsienen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T05:24:39Z-
dc.date.available2014-06-06T05:24:39Z-
dc.identifierU0005-1308201101311200zh_TW
dc.identifier.citation[1] K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada, S. Niki, “Improved External Efficiency InGaN-Based Light-Emitting Diodes with Transparent Conductive Ga-Doped ZnO as p-Electrodes”, Jpn. J. Appl. Phys. 43 (2004) L180–L182. [2] T.J. Hsueh, C.L. Hsu, S.J. Chang, I-C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors”, Sens. Actuators B 126 (2007) 473–477. [3] Z.A. Ansari, R.N. Karekar, R.C. Aiyer, “Humidity sensor using planar optical waveguides with claddings of various oxide materials”, Thin Solid Films 305 (1997) 330–335. [4] Y.S. Rim, S.M. Kim, K.H. Kim, “Effects of Substrate Heating and Film Thickness on Properties of Silver-Based ZnO Multilayer Thin Films”, Jpn. J. Appl. Phys. 47 (2008) 5022–5027. [5] L. Zhang, H. Zhang, Y. Bai, J.W. Ma, J. Cao, X.Y. Jiang and Z.L. Zhang, “Enhanced performances of ZnO-TFT by improving surface properties of channel layer”, Solid State Commun. 146 (2008) 387–390. [6] S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, “Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes”, Sol. Energy Mater. Sol. Cells 86 (2005) 385–397. [7] J. Hüpkes, B. Recha, O. Kluth, T. Repmann, B. Zwaygardt, J. Muller, R. Drese, M. Wuttig, “Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells”, Sol. Energy Mater. Sol. Cells 90 (2006) 3054–3060. [8] H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, and D.B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices”, Appl. Phys. Lett. 76 (2000) 259–261. [9] X. Jiang, F.L. Wong, M.K. Fung, and S.T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”, Appl. Phys. Lett. 83 (2003) 1875–1877. [10] J. Hu and R.G. Gordon, “Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells”, Sol. Cells 30 (1991) 437–450. [11] P.M. Ratheesh Kumar, C. Sudha Kartha, K.P. Vijayakumar, F. Singh, D.K. Avasthi, “Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films”, Mater. Sci. Eng. B 117 (2005) 307–312. [12] A. Maldonado, S. Tirado-Guerra, M. de la L. Olvera, “Chemically sprayed ZnO:(F, Zr) thin films: Effect of starting solution ageing time and substrate temperature on the physical properties”, J. Phys. Chem. Solids 70 (2009) 571–575. [13] S.M. Rozati, S. Moradi, S. Golshahi, R. Martins, E. Fortunato, “Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time”, Thin Solid Films 518 (2009) 1279–1282. [14] S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, “Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol–gel process”, Appl. Surf. Sci. 255 (2008) 2353–2359. [15] R. Gonzalez-Hernandez, Arturo I. Martinez, C. Falcony, A.A. Lopez, M.I. Pech-Canul, H.M. Hdz-Garcia, “Study of the properties of undoped and fluorine doped zinc oxide nanoparticles”, Mater. Lett. 64 (2010) 1493–1495. [16] H.Y. Xu, Y.C. Liu, R.Mu, C.L. Shao, Y.M. Lu, D.Z. Shen, and X.W. Fan, “F-doping effects on electrical and optical properties of ZnO nanocrystalline films”, Appl. Phys. Lett. 86 (2005) 123107. [17] L. Cao, L. Zhu , J. Jiang, R. Zhao, Z. Ye, B. Zhao, “Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition”, Sol. Energy Mater. Sol. Cells 95 (2011) 894–898. [18] B.G. Choi, I.H. Kim, D.H Kim, K.S. Lee, T.S. Lee, B. Cheong, Y.J. Baik, W.M. Kim, “Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter”, J. Eur. Ceram. Soc. 25 (2005) 2161–2165. [19] H.S. Yoon, K.S. Lee, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim, “Properties of fluorine doped ZnO thin films deposited by magnetron sputtering”, Sol. Energy Mater. Sol. Cells 92 (2008) 1366–1372. [20] D.Y. Ku, Y.H. Kim, K.S. Lee, T.S. Lee, B. Cheong, T.Y. Seong, W.M. Kim, “Effect of fluorine doping on the properties of ZnO films deposited by radio frequency magnetron sputtering”, J Electroceram (2009) 23 415–421. [21] Y.Z. Tsai, N.F. Wang, C.L. Tsai, “Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering”, Thin Solid Films 518 (2010) 4955–4959. [22] Y.H. Kim, J. Jeong, K.S. Lee, J.K. Park, Y.J. Baik, T.-Y. Seong, W.M. Kim, “Characteristics of ZnO:Al thin films co-doped with hydrogen and fluorine”, Appl. Surf. Sci. 256 (2010) 5102–5107. [23] H.L. Hartnagel, A.K. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publishing, (1995). [24] J.B. Lee, H.J. Lee, S.H. Seo, J.S. Park, “Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications”, Thin Solid Films 398-399 (2001) 641–646. [25] Y.C. Lin , C.R. Hong, H.A. Chuang, “Fabrication and analysis of ZnO thin film bulk acoustic resonators”, Appl. Surf. Sci. 254 (2008) 3780–3786. [26] B.H. Choi, H.B. Im, “Optical and electrical properties of SnOx thin films made by reactive r.f. magnetron sputtering”, Thin Solid Films 712 (1990) 193–194. [27] T. Minami, H. Sato, H. Nanto, S. Takata, “Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys. 24 (1985) L781–L784. [28] S.H. Park, J.B. Park, P.K. Song, “Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes”, Curr. Appl. Phys. 10 (2010) S488–S490. [29] J.H. Lee, “Effects of hydrogen incorporation and heat treatment on the properties of ZnO:Al films deposited on polymer substrate for flexible solar cell applications”, Curr. Appl. Phys. 10 (2010) S515–S519. [30] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Prog. Mater. Sci. 50 (2005) 293–340. [31] Stephen A. Campbell, “The Science and Engineering of Microelectronic Fabrication”, 2nd edition, Oxford University Press, (2001). [32] 莊達人, “VLSI製造技術”, 高立圖書有限公司, 民國96年10月7日六版二刷. [33] John A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., 11 (4) (1974) 666–670. [34] G. Sanon, R. Rup, A. Mansingh, “Growth and characterization of tin oxide films prepared by chemical vapour deposition”, Thin Solid Films 190 (1990) 287–301. [35] S.M. Sze, “Semiconductor Devices: Physics and Technology”, 2nd edition , John Wiley & Sons, Inc., (2002). [36] B.E. Sernelius, K.F. Berggren, Z.C. Jim, I. Hamberg, C.G. Granqvist, “Band-gap tailoring of ZnO by means of heavy Al doping”, Phys. Rev. B 37 (17) (1988) 10244–10248. [37] K.H. Kim, K.C. Park, and D.Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys. 81 (1997) 7764. [38] B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee, J.M. Myoung, “Post-annealing of Al-doped ZnO films in hydrogen atmosphere”, J. Cryst. Growth 281 (2005) 475–480. [39] E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev. 93 (1954) 632–633. [40] G. Haacke, “New figure of merit for transparent conductors”, J. Appl. Phys. 47 (1976) 4086–4089. [41] A.P. Roth, J.B. Webb and D.F. Williams, “Band-gap narrowing in heavily defect-doped ZnO”, Phys. Rev. B 25 (1982) 7836-7839. [42] W. Liu, G. Du, Y. Sun, Y. Xu, T. Yang, X. Wang, Y. Chang, F. Qiu, “Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering: H2-induced property changes”, Thin Solid Films 515 (2007) 3057–3060. [43] L.Y. Chen, W.H. Chen, J.J. Wang, F. C.-N. Hong, and Y.K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering”, Appl. Phys. Lett. 85 (2004) 5628. [44] R. Das, T. Jana, S. Ray, “Degradation studies of transparent conducting oxide: a substrate for microcrystalline silicon thin film solar cells”, Sol. Energy Mater. Sol. Cells 86 (2005) 207–216. [45] N. Ohashi, Y.G. Wang, T. Ishigaki, Y. Wada, H. Taguchi, I. Sakaguchi, T. Ohgaki, Y. Adachi, H. Haneda, “Lowered stimulated emission threshold of zinc oxide by hydrogen doping with pulsed argon–hydrogen plasma”, J. Cryst. Growth 306 (2007) 316–320. [46] Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, N.Y. Garces, N.C. Giles, L.E. Halliburton, S. Niki, and L.J. Brillson, “Remote hydrogen plasma doping of single crystal ZnO”, Appl. Phys. Lett. 84 (2004) 2545–2547. [47] W. Beyer, H. Wagner, H. Mell, “Effect of boron-doping on the hydrogen evolution from a-Si:H films”, Solid State Commun. 39 (1981) 375–379. [48] T. Koida, H. Fujiwara, M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells”, Sol. Energy Mater. Sol. Cells 93 (2009) 851–854.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2959-
dc.description.abstractFluorine-doped zinc oxide (FZO) thin films were deposited on Corning 1737 glasses by RF magnetron sputtering. This study investigated effects of deposition parameters on properties of FZO thin films by changing sputtering power, substrate temperature and hydrogen content. The FZO thin films deposited at room temperature were subsequently treated by H2+Ar plasma. Effects of the post treatment on properties of FZO films were investigated. Finally, α-Si thin film solar cells were fabricated using the developed FZO films as window layers to study the influence of diluted hydrochloric acid (HCl) etching and the post treatment on properties of solar cells. The prepared films had the lowest electrical properties (ρ=9.29×10-4 Ω-cm) and average optical transmittance of 90% in the wavelength range of 400-700 nm for the 650-nm-thick FZO thin films deposited with the RF power of 150 W at room temperature. After plasma treatment, the lowest resistivity was achieved under the conditions of RF power of 25 W, substrate temperature of 200 °C, and working pressure of 1 torr. The film resistivity decreased from 9.29×10-4 Ω-cm to 7.92×10-4 Ω-cm and the average optical transmittance was remained. Furthermore, the process gases with various H2/(H2+Ar) ratios significantly affect the resistivity of FZO films. After process optimization, the lowest resistivity of 5.549×10-4 Ω-cm and average optical transmittance of 90% were obtained at the H2/(H2+Ar) ratio of 3%. For diluted HCl etched films, the resistivity slightly increased and the surface morphology obviously became rougher. The haze ratio (400-700 nm) of the etched FZO films increased from 0.64% to 46.1% after 0.5% diluted HCl etching. Finally, α-Si thin film solar cells were fabricated by using the 0.2%-HCl etched and plasma treated FZO film as the window layer. Its short-circuit current density, fill factor, and efficiency increased by 18%, 3%, and 20%, respectively, as compared to that using the as-deposited FZO films.en_US
dc.description.abstract本研究使用射頻磁控濺鍍法沉積氧化鋅摻氟(ZnO:F, FZO)薄膜於康寧1737玻璃,以改變濺鍍功率、基板溫度與製程中氫氣(H2)含量的方式來探討濺鍍參數對FZO薄膜的影響,並且討論室溫沉積下之FZO薄膜經過氫電漿處理之後,對其表面形貌、結構、電性及光學特性做探討,最後搭配稀鹽酸(HCl)蝕刻表面,並製作成太陽能電池,以探討不同製程對光電轉換效率的影響。 FZO薄膜以射頻功率150 W,基板溫度為室溫,薄膜厚度650 nm條件下,可得到最佳光電特性表現的FZO薄膜,其電阻率為9.29×10-4 Ω-cm,可見光平均穿透率約為90%。接著利用電漿處理,使用氫氣與氬氣1:1混合氣體,電漿功率25 W,基板溫度200 °C、工作壓力1 Torr條件下,電阻率由9.29×10-4 Ω-cm 下降至7.92×10-4 Ω-cm。 此外,改變製程中氫氣/(氫氣+氬氣)的比例亦會影響FZO薄膜電阻率,經製程最佳化後發現,於氫含量為3%時,薄膜具有5.549×10-4 Ω-cm的低阻值表現,可見光平均穿透率約為90%。 在稀鹽酸蝕刻部分,蝕刻後薄膜的電阻率會稍微的上升且表面形貌明顯變粗糙,FZO薄膜經過0.5%稀鹽酸蝕刻後,在可見光區平均霧度(haze ratio)從0.64%增加到46.1%。 最後,將FZO製作成太陽能電池之視窗層,從結果可看出經過稀鹽酸蝕刻且經過電漿處理的FZO薄膜之太陽能電池可提升約18%的短路電流密度、約3%的填充因子和約20%的轉換效率。zh_TW
dc.description.tableofcontents誌謝 i 中文摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 透明導電膜 1 1.2 研究動機與目的 2 第二章 基礎理論與文獻回顧 5 2.1氧化鋅晶體結構及特性 5 2.2 氧化鋅摻氟(ZnO:F, FZO)薄膜 7 2.3 電漿之基礎理論 8 2.4 濺鍍原理 9 2.5 射頻磁控濺鍍系統 10 2.6 薄膜沉積 11 2.6.1 薄膜成長 11 2.6.2 鍍層微結構的Thorton模型 13 第三章 實驗步驟與方法 15 3.1 實驗製程與分析流程 15 3.2靶材製作流程 16 3.2.1 粉末配製 17 3.2.2 靶材製程 17 3.3 玻璃切割與清洗 18 3.4 實驗系統與實驗參數 19 3.4.1 濺鍍系統與實驗參數 19 3.4.2 電漿處理系統與實驗參數 21 3.4.3 稀鹽酸蝕刻系統與實驗參數 22 3.4.4 矽薄膜太陽能電池製作系統與實驗參數 23 3.5 薄膜量測分析 23 3.5.1 薄膜厚度量測 23 3.5.2 XRD薄膜結構分析 24 3.5.3 表面形貌分析 25 3.5.4 薄膜電性量測 25 3.5.4.1 四點探針 25 3.5.4.2 霍爾量測 25 3.5.5 薄膜光學量測 26 第四章 結果與討論 28 4.1 沉積功率對FZO薄膜影響 28 4.1.1 沉積速率 28 4.1.2 SEM表面形貌 29 4.1.3 XRD結構分析 30 4.1.4 電性分析 31 4.1.5 光學分析 33 4.2 基板溫度對FZO薄膜影響 35 4.2.1 沉積速率 35 4.2.2 SEM表面形貌 36 4.2.3 XRD結構分析 38 4.2.4 電性分析 39 4.2.5 光學分析 41 4.3 製程中摻氫對FZO薄膜影響 43 4.3.1 沉積速率 43 4.3.2 SEM表面形貌 44 4.3.3 XRD結構分析 45 4.3.4 電性分析 47 4.3.5 光學分析 49 4.4 電漿後處理對FZO薄膜影響 51 4.4.1 不同電漿功率後處理對FZO薄膜影響 51 4.4.1.1 SEM表面形貌 51 4.4.1.2 XRD結構分析 52 4.4.1.3 電性分析 54 4.4.1.4 光學分析 56 4.4.2 不同電漿後處理時間對FZO薄膜影響 58 4.4.2.1 SEM表面形貌 58 4.4.2.2 XRD結構分析 59 4.4.2.3 電性分析 61 4.4.2.4 光學分析 62 4.5 稀鹽酸蝕刻對FZO薄膜影響 65 4.5.1 蝕刻速率 65 4.5.2 SEM表面形貌 66 4.5.3 電性分析 66 4.5.4 光學分析 67 4.6 氫化非晶矽太陽能電池之特性 69 第五章 結論 73 參考文獻 74zh_TW
dc.language.isoen_USzh_TW
dc.publisher光電工程研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308201101311200en_US
dc.subjectsputteringen_US
dc.subject濺鍍zh_TW
dc.subjectFZOen_US
dc.subjecthydrogen plasmaen_US
dc.subjectsolar cellsen_US
dc.subject氧化鋅摻氟zh_TW
dc.subject氫電漿zh_TW
dc.subject太陽電池zh_TW
dc.title射頻磁控濺鍍製備氧化鋅摻氟薄膜應用於薄膜太陽能電池之研究zh_TW
dc.titleStudy of fluorine doped zinc oxide thin films prepared by RF magnetron sputtering for thin film solar cell applicationsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:光電工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.