Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2960
標題: The influence of n-type a-Si:H layers on the performance of a-Si:H thin film solar cells
N型氫化非晶矽層對氫化非晶矽薄膜太陽電池性能之影響
作者: 姜晶恬
Chiang, Ching-Tien
關鍵字: Amorphous silicon;非晶矽;thin-film solar cell;doping;薄膜太陽電池;摻雜
出版社: 光電工程研究所
引用: [1] Sterling H F, Swann R C G, Solid State Electron, (1965) 8 653 [2] A. Triska, D. Dennison, H. Fritzsche, Bulletin of American Physics Society pp.20-392, 1975 [3] W.E. Spear, P.G. Le Comber, Solid State Communications, Volume 17, Issue 9, 1 November 1975, Pages 1193-1196 [4] D. Carlson, C. Wronski, Appl. Phys.Lett, 28, p.671 (1976) [5] Schropp, Miro Zeman, IEEE Transactions on electron devices, vol. 46, NO. 10, October 1999 [6] R.S. Crandall, Journal of Non-Crystalline Solids 266-269 (2000) 423-427 [7] D.E. Carlson, Semiconductors and Semimetals, Vol. 21D (1984) p. 7. [8] S. Guha, J. Yang, P. Nath and M. Hack, Appl. Phys. Lett. 49 (1986) 218 [9] N. Gonzdle: et al. , Solar Energy Materials and Solar Cells 45 (1997) 175-184 [10] L. Raniero et al., Solar Energy Materials & Solar Cells 87 (2005) 349-355 [11] [12] J.T auc, Amorphous and Liquid Semiconductors, Plenum Press, New York, 1974 [13] R. Terasa et al., Thin Solid Films 427 (2003) 270-273 [14] Y. Poissant, P. Roca i Cabarrocas, Journal of Non-Crystalline Solids 266-269 (2000) 1134-1139 [15] A. Fontcuberta i Morral and P. Roca i Cabarrocas, PHYSICAL REVIEW B 69, 125307 (2004) [16] Matsuda, A. and K. Tanaka, Thin Solid Films 92, 171 (1982) [17] Matsuda, A. in 25th IEEE PV Specialist Conference (IEEE, New York, 1996), 1029 (1996) [18] Morrel H. Cohen, H. Fritzsche and S.R. Ovshinsky, Physical Review Letters Vol 32, No 20,1065(1969) [19] N. Itabashi, K. Kato, N. Nishiwaki. T. Goto, C. Yamada, and E. Hirota, Jpn. J. Appl. Phys. 27, L1565 (1988) [20] Y. Watanabe, M. Shiratani, Y. Kubo, I Ogawa, and S. Ogi, Appl. Phys. Lett. 53, 1263 (1988) [21] Ujjwal K. Das, S. Morrison and Arun Madan, Mat. Res. Soc. Symp. Proc. V175 A26.6.1 2002 [22] Takashi Sugino et al., Jpn. J. Appl. Phys. 31 (1992) pp. L1522-L1524 [23] Y. UGAL et al., Jpn. J. Appl. Phys. 37 (1998) pp. 3226-3231 [24] Takashi Sugino et al., Jpn. J. Appl. Phys. 32 (1993) pp. L1196-L1199 [25] S. NOZU et al., Jpn. J. Appl. Phys. Vol. 38 (1999) pp. L 295-L 297 [26] Jeng-Hua Wei, Si-Chen Lee, J. Vac. Sci. Technol. A16(2), pp587-590 (1998)
摘要: 
本論文以13.56 MHz電漿增強化學氣相沉積系統沈積N型氫化非晶矽薄膜。本論文分為(1)單層膜與(2)多層膜結構兩個部份。單層膜部份,以變化脈波調變電漿開關頻率(pulse frequency)由1 Hz至10 kHz條件下沉積N型氫化非晶矽薄膜;非晶矽/磷電漿處理(a-Si:H/p)多層膜結構部份,以變化磷電漿射頻功率由20 W至100 W條件下製作N型氫化非晶矽薄膜。
單層膜部份,隨著脈波調變電漿開關頻率的增加,活化能有明顯下降的趨勢,而暗電導率則隨之增加,顯示在較高的脈波調變頻率的條件下,薄膜有較佳的摻雜效率;而由橢圓儀的分析結果發現,高頻的條件下有較高的薄膜緻密度。多層膜部份,當磷電漿射頻功率增加時,活化能降低、暗電導率則逐漸上升,顯示在較大的射頻功率條件下,磷原子較容易摻雜進入非晶矽薄膜中;而橢圓儀分析結果則指出高功率的電漿條件會傷害薄膜,增加內部缺陷密度。
採用較低活化能、較高暗電導率與較為緻密的氫化非晶矽n層,能提昇太陽電池的短路電流密度與填充因子。因此隨著單層膜製程中脈波調變頻率的增加與多層膜磷電漿射頻功率的上升,短路電流密度與填充因子都有提昇的趨勢。而以10 kHz條件製作的單層膜與100 W條件製作的多層膜則各自擁有其相同結構薄膜的最高效率,分別為5.04%與5.11%。

In this thesis, a 13.56 MHz plasma-enhanced chemical vapor deposition with a pulse modulation RF power is used to fabricate n-type hydrogenated amorphous (a-Si:H) silicon thin films. The experiments are divided into two parts: (1) single-layer deposition and (2) multilayer with PH3 plasma treatment. The single-layer n-type a-Si:H films are fabricated with changing pulse frequency from 1 to 10k Hz and with fixed duty cycle 50%. The multilayers are a-Si:H/p (phosphorus) structures that after a 5 nm a-Si:H sublayer deposition, a-Si:H sublayer is deposited and implanted P atoms into a-Si:H sublayer by 20 W to 100 W PH3 plasma treatments for 10 sec.
For single n-type a-Si:H films, increasing pulse frequency can reduce the activation energy and increase the dark conductivity. The results indicate that the higher pulse frequency induced a greater doping efficiency. The SE analysis shows that the higher pulse frequency makes films become denser. For a-Si:H/p multilayers, increasing PH3 treatment power, the activation energy is decreasing and the dark conductivity is increasing. The results show that high RF power PH3 treatment makes phosphorus atoms more easily doped into the a-Si:H sublayers. However, the SE analyses also display that high RF power treatment increase the porosity of the films.
The a-Si:H solar cells with single n-layer fabricated by high pulse frequency having low activation energy, high dark conductivity and high film density can increase the short-circuit current and fill factor. For a-Si:H solar cells with a-Si:H/p multilayer n-layers, as PH3 treatment RF power increased, the short-circuit current density and fill factor are increased. The solar cells with the single n-layer fabricated by 10 kHz, and with a-Si:H/p multilayer n-layers by 100 W PH3 plasma treatments have the maximum efficiencies of 5.04% and 5.11%, respectively.
URI: http://hdl.handle.net/11455/2960
其他識別: U0005-2708200908473100
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.