Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2962
標題: 以脈波調變方式製作P型氫化非晶碳化矽層對氫化非晶矽薄膜太陽能電池性能之影響
Effect of p-type a-SiC:H layers on the performance of a-Si:H thin film solar cells by pulse-wave modulation plasma
作者: 許隆興
Hsu, Lung-Hsing
關鍵字: p型氫化非晶碳化矽;p-type a-SiC:H;薄膜太陽能電池;硼摻雜;多層膜;thin film solar cell;boron doping;multilayer
出版社: 光電工程研究所
引用: [1] S. Morrison et al. / Solar Energy Materials & Solar Cells 76 (2003) 281–291 [2] H. Curtins, N. Wyrsch, A.V. Shah, Electron. Lett. 23 (1987) 228. [3] S. Morrison, A. Madan, MRS Conf. 507 (1998) 559. [4] A. Madan et al. / Solar Energy Materials & Solar Cells 59 (1999) 51–58 [5] K. Nomoto, et al., Short-pulse VHF plasma enhanced CVD of high-deposition-rate a-Si:H films, in: Proceedings of the 14th European Photovoltaic Solar Energy Conference and Exhibition, 1997, pp. 1226–1230 [6] Y. Fujioka et al. / Solar Energy Materials & Solar Cells 90 (2006) 3416–3421 [7] J. Meier, et al., Appl. Phys. Lett. 65 (1994) 860. [8] K. Nomoto, et al., Jpn. J. Appl. Phys. L1372. [9] K. Yamamoto, et al., High efficiency thin film silicon solar cell and module, in: Proceedings of the 29th IEEE PVSC, 2002, pp. 1110–1114. [10] P. Chaudhuri et al. / Solar Energy Materials & Solar Cells 93 (2009) 1016–1019 [11] T.J. McMahon, A. Madan, Appl. Phys. Lett. 57 (1985) 5302. [12] P. Chaudhuri et al. / Journal of Non-Crystalline Solids 354 (2008) 2105–2108 [13] T. Fujii et al. / Solar Energy Materials and Solar Cells 34 (1994) 409–414 [14] Y. Poissant, P. Roca i Cabarrocas / Journal of Non-Crystalline Solids 266–269 (2000) 1134–1139 [15] A. Hadjadj, P. St''ahel, P. Roca i Cabarrocas, V. Paret, Y. Bounouh, J.C. Martin, J. Appl. Phys. 83 (1998) 830 [16] Th. Nguyen-Tran, V. Suendo, and P. Roca i Cabarrocas, Appl. Phys. Lett. 87 (2005) 011903 [17] Jiecai Han, Manlin Tan, Jiaqi Zhu, and Songhe Meng, Appl. Phys. Lett. 90 (2005) 083508 [18] Chang Hyun Lee and Koeng Su Lim, Appl. Phys. Lett. 72 (1), 5 January 1998 [19] S.Y. Myong et al. / Solar Energy Materials & Solar Cells 85 (2005) 133–140 [20] 江雨龍 氫化非晶矽及微晶矽薄膜太陽電池 電子資訊第13卷第一期2007年6月
摘要: 
In this thesis, a 13.56 MHz plasma-enhanced chemical vapor deposition with pulse-wave modulation plasma is used to fabricate p-type hydrogenated amorphous silicon carbide single-layer (p-type a-SiC:H) and a-SiC:H/B multilayer thin films. The single-layer p-type a-SiC:H films are fabricated with fixing chamber pressure and power peak, and changing pulse-wave modulation plasma frequency and duty cycle from 100 Hz to 10 kHz and 25 %, 50 %, respectively. In addition, the effect of hydrogen dilution with the SiH4, CH4 and B2H6 gases is also used to check the influence on the doping efficiency. The multilayers are a-SiC:H/B structures that after a 2 nm a-SiC:H sublayer deposition, a-SiC:H sublayer is deposited, and implanted B atoms into a-SiC:H by pulse frequency changing from 100 Hz to 10 kHz and fixed duty cycle of 50 %.
For single p-type a-SiC:H layers, increasing pulse frequency and duty cycle can increase deposition rate, bandgap and activation energy, but reduce the absorption coefficients of the films. Bandgap and activation energy of single p-type a-SiC:H layers are changed from 1.78 to 1.96 eV and 0.39 to 0.54 eV, respectively. The absorption coefficient of 632.88 nm wavelength is changed from 5,435 to 34 cm-1.
For p-type a-SiC:H/B multilayers, higher pulse frequency can excite and dissociate more boron atoms. Increasing pulse frequency can increase the dark conductivity from 0.58 × 10-6 to 2.09 × 10-6 Ω-1cm-1, and decrease the activation energy decrease from 0.46 to 0.42 eV.
From the analyses of the I-V characteristics of solar cells, the results indicate that high bandgap, low activation energy, high dark conductivity and high refraction index are the requirements of good quality for p-type films. The solar cell with the single p-type a-SiC:H layer fabricated by pulse frequency 100 Hz and duty cycle 25 % has the maximum efficiency, which the efficiency (η), fill factor (FF), open-circuit voltage (Voc) and short-current density (Jsc) of the solar cell is 4.81 %, 58.7 %, 0.693 V, and 11.81 mA/cm2, respectively. The solar cells with the p-type a-SiC:H/B multilayer fabricated by B2H6 plasma treatment with pulse frequency 10 kHz and duty cycle 50 % have the maximum efficiency, which the η, FF, Voc and Jsc of the solar cell is 4.47 %, 56.7 %, 0.721 V and 10.92 mA/cm2, respectively.

本論文以13.56 MHz電漿增強化學氣相沉積搭配脈波調變電漿製作p型氫化非晶碳化矽單層膜(p-type a-SiC:H)及a-SiC:H/B2H6電漿處理之多層膜,探討p型窗戶層對氫化非晶矽薄膜太陽電池性能的影響。固定腔體壓力及功率峰值,脈波調變電漿頻率及工作週期的變化範圍分別為100 Hz ~10 kHz 及25 %、50 %。另外也以氫氣稀釋法提高SiH4、CH4及B2H6氣體的稀釋比例探討對摻雜效果的影響。P型多層膜為a-SiC:H/B週期變化之結構,a-SiC:H子層厚度固定為2 nm,在a-SiC:H子層沉積後,分別以脈波調變電漿頻率100 Hz ~10 kHz及固定工作週期50% 激發B2H6氣體,以B2H6電漿沉積及植入硼原子,探討硼離子摻雜的效果。

對單層p型a-SiC:H薄膜,實驗結果顯示,增加脈波頻率及工作週期,提高薄膜沉積速率、能隙值及活化能,但降低吸收係數。單層膜之能隙值及活化能變化分別介於1.78至1.96 eV 及0.39至0.54 eV。波長632.88 nm的吸收係數之變化則介於5435至34 cm-1。

對p型a-SiC:H/B多層膜,激發B2H6的脈波頻率越高,硼離子的解離越多。暗電導率由0.58 × 10-6升高至2.09 × 10-6 Ω-1cm-1而活化能由 0.46降低至 0.42 eV。

太陽電池特性分析實驗結果,高能隙值、低活化能、高暗電導及高折射率為較佳的p型薄膜條件。對單層p型a-SiC:H太陽電池,以脈波頻率為100 Hz、工作週期為25 % 的條件有較好的太陽電池效率。此太陽能電池的轉換效率、填充因子、開路電壓及短路電流密度分別為4.81 %、58.7 %、0.693 V及11.81 mA/cm2。對p型a-SiC:H/B多層膜太陽電池,以脈波調變頻率為10 kHz的B2H6電漿處理具有較好的效率。此太陽能電池的轉換效率、填充因子、開路電壓及短路電流密度分別為4.47 %、56.7 %、0.721 V及10.92 mA/cm2。
URI: http://hdl.handle.net/11455/2962
其他識別: U0005-2708200911065300
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.