Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorFang-Hsing Wangen_US
dc.contributor.advisorYeu-Long Jiangen_US
dc.contributor.authorChen, Jin-Zhouen_US
dc.identifier.citation[1]. K. L. Chopra and S. Major and D. K. Pandya: Transparent conductors-A status review, Thin Solid Films, vol.102, pp.1-46, (1983). [2]. H. L. Hartnagel and A. L. Dawar and A. K. Jain and C. Jagadish: Semiconducting Transparent Thin Films, pp.17, (1995). [3]. 許國銓: 科技玻璃-高性能透明導電玻璃, 材料與社會, pp.110-119, (1993). [4]. D. S. Ginley and C. Bright: Transparent Conducting Oxides, MRS Bulletin, vol.25, pp. 15-18, (Aug. 2000). [5]. B. G. Lewis and D. C. Paine: Applications and Processing of Transparent Conducting Oxides, MRS Bulletin, vol.25, pp. 22-27, (Aug. 2000). [6]. H. Kawazoe and H. Yanagi and K. Ueda and H. Hosono: Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions, MRS Bulletin, vol.25, pp.28-38, (Aug. 2000). [7]. T. Minami: New n-Type Transparent Conducting Oxides, MRS Bulletin, pp.38-44, (Aug. 2000). [8]. A. J. Freeman and K. R. Poeppelmeier and T. O. Mason and R. P. H. Chang and T. J. Marks: Chemical and Thin-Film Strategies for New Transparent Conducting Oxides, MRS Bulletin, pp. 45-51, (Aug. 2000). [9]. R. G. Gordon: Criteria for Choosing Transparent Conductors, MRS Bulletin, pp.52-57, (Aug. 2000). [10]. T. J. Coutts and D. L. Young and X. Li: Characterization of Transparent Conducting Oxides, MRS Bulletin, pp.58-65, (Aug. 2000). [11]. T. O. Mason and R. P. H. Chang and T. J. Mark and K. R. Poeppelmeier: Improved Transparent Conducting Oxides for Photovoltaics, National Renewable Energy Laboratory, (2003). [12]. 陳柏榕: 氧化鋅鋁透明導電薄膜研究, 大葉大學電機工程研究所碩士論文, (2010). [13]. H. L. Hartnagel and A. L. Dawar and A. K. Jain and C. Jagadish: Semiconducting Transparent Thin Films, ch.3, (1995) [14]. B. H. Choi and H. B. Im: Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering, Thin Solid Films, vol. 193-194, pp.712-720, (1990). [15]. T. Minami and H. Sato and H. Nanto and S. Takada: Japanese Journal of Applied Physics, vol.25, pp.1776, (1986). [16]. S. Major and S. Kumar and M. Bhatnagar and K. L. Chopra: Effect of hydrogen plasma treatment on transparent conducting oxides, Applied Physics Letters, vol.49, pp.394-396, (1986). [17]. W. Tang and D. C. Cameron: Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process, Thin Solid Films, vol.238, pp.83-87, (1994). [18]. G. Gordillo and C. Calderón: Properties of ZnO thin films prepared by reactive evaporation ,Solar Energy Materials & Solar Cell, vol.69, pp.251-260, (2001). [19]. J. Ma and F. Ji and D. H. Zhang and H. L. Ma and S. Y. Li: Optical and electronic properties of transparent conducting ZnO and ZnO : Al films , Thin Solid Films, vol.357, pp.98-101, (1999). [20]. Y. Igasaki and H. Saito: The effects of Zinc diffusionon the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering, Thin Solid Films, vol.199, pp.223-230, (1991). [21]. B. S. Chiou and S. T. Hsieh and W. F. Wu: Deposition of indium tin oxide films on acrylic substrates by radiofrequency magnetron sputtering, Journal of the American Ceramic Society, vol.77, pp.1740-1744, (1994). [22]. M. Ohring: The Materials Science of Thin Films, pp.509-514 , (1991). [23]. F. Paraguay D. and W. Estrada L. and D. R. Acosta N. and E. Andrade and M. Miki- Yoshida: Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis, Thin Solid Films, vol.350, pp.192-202, (1999). [24]. N. Serpone and D. Lawless and R. Khairutdinov: Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size Quantization or direct transitions in this indirect semiconductor, J. Phys. Chem., vol.99, pp.16646-16654, (1995). [25]. E. Burstein: Anomalous Optical Absorption Limit in InSb, Phys. Rev., vol.93, pp.632-633, (1954). [26]. T. S. Moss: The Interpretation of the Properties of Indium Antimonide, Phys. Soc. London Sect. B, vol.67 pp.775-782, (1954). [27]. Brian Chapman: Glow Discharge Processes: Sputtering and Plasma Etching, 1th ed., (1980). [28]. E. S. Shim et al.: Effect of The Variation of Films Thickness on The Structural and Optical Properties of ZnO Thin Films Deposition on Sapphire Substrate Using PLD, Applied Surface Science, vol.186, pp.474-476, (2002). [29]. H. Kashani: The signification of parallel electric field on the preferred orientation and surface morphology of ZnO thin films , Journal of Material Science Letters, vol. 18, pp.1043-1045, (1999). [30]. C. J. Brinker and G. W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press, 5th ed., (2002). [31]. 吳坤陽: 溶凝膠法製備含銀之AZO 透明導電膜的研究, 國立成功大學化學工程研究所碩士論文, (2005). [32]. C. C. Wang: Industrial Materials Magazine(工業材料雜誌), vol.236, (2006). [33]. 謝坤龍: 鈀銀合金/氧化鋁複合膜之特性研究:/以溶膠凝膠法修飾基材孔徑之探討, 國立成功大學化學工程研究所碩士論文, (2000). [34]. T. Prasada Rao and M. C. Santhoshkumar: Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis , Applied Surface Science, vol.255, pp.4579-4584, (2009) [35]. I. Hamberg and C. G. Granqvist and K. F. Berggren and B. E. Semelius and L. Engstrom: Band-gap widening in heavily Sn-doped In2O3, physical Review B, vol.30, pp.3240-3249, (1984). [36]. B. D. Cullity and S. R. Stock: Elements of X-Ray Diffraction, 3rd ed., pp.167-171, (2001). [37]. A. L. Patterson: The Scherrer Formula for X-Ray Particle Size Determination, Physical review, vol.56, pp.978-982, ( 1939).zh_TW
dc.description.abstract以磁控直流 (DC)加上射頻(RF)濺鍍法製備摻鋁氧化鋅(AZO)透明導電薄膜。利用不同的製程變因,如RF功率及基板溫度的改變,再將其作6%氫/氬退火或泡水過程,比較不同變因與不同後處理對薄膜的影響。 將直流功率固定為80瓦,在射頻功率小於80瓦膜厚隨射頻功率瓦數提高而增加, 但在射頻功率為功率100與120瓦時可能因功率過強而使薄膜更為密實,降低薄膜鍍率。 薄膜浸泡超高純水後,載子濃度、氧缺陷增加,遷移率、能隙降低。 薄膜經氫退火後,載子濃度及遷移率增加、電阻變小。能隙隨基板溫度增加變大。低溫沈積的薄膜經氫退火後載子濃度明顯增加使得電阻大大降低。基板溫度在300及325度時薄膜結構穩固,不因泡水而遭到破壞。250 ~300 度時薄膜經氫退火後,氧缺陷隨溫度增加而減少。 不同變因所沈積的薄膜在可見光的範圍內穿透率皆能在80%以上,在經過氫退火後導電性皆有改善的現象,泡過水的薄膜在(002)與(004)方向的結構可能因水分的關係遭到破壞,唯獨RF功率為30W、基板溫度為300與325度時能保有相較完整的結構。zh_TW
dc.description.abstractIn this thesis, the aluminum doped ZnO transparent conducting films were prepared by introducing the direct current (DC) power and radio frequency (RF) power into the reactor simultaneously magnetic controlled sputtering method. We investigated the effects of different process parameters such as changing the RF sputtering power and substrate temperature. Then the AZO thin films were annealed in 6% H2/ Ar ambient or dipped into DI-water. The effects of post treatment of films on electrical characteristics, optical characteristics, structure and the composition were investigated. We fix the DC power at 80W, the film's thickness increases with the increasing RF power before 80W, but decreases after 80W. This could be due to higher incident power make the film denser. The carrier concentration, oxygen vacancy, mobility, and band-gap decrease after the substrate was dipped into the water. After annealing, the carrier concentration, mobility and oxygen vacancy increases, that decreases the resistivity. Band-gap of the film increases with the substrate temperature. Especially, the carrier concentrations for those films deposited at lower substrate temperature are increasing clearly. This lowers the resistivity greatly. The structure for those films deposited at 300 and 325 oC substrate temperature is stable, and was not destroy by the DI water. Therefore, the oxygen vacancy decreases with the substrate temperature after annealing. The transmittance for different process parameters of the deposited film in the visible range are great than 80%. After H2/Ar annealing to improve the phenomenon of electrical behavior, films dip in the DI -water the peak of (002) and (004) orientation the relationship between the structure due to the destruction of water, except RF power 30W, substrate temperature of 300 and 325 degrees to maintain compared to the complete structure.en_US
dc.description.tableofcontents第1章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 第2章 基礎理論與文獻回顧 4 2.1 氧化鋅薄膜特性 4 2.1.1 氧化鋅薄膜簡介 4 2.1.2 氧化鋅薄膜導電性質 6 2.1.3 氧化鋅薄膜光學性質 7 2.2 薄膜製作方式 9 2.2.1 磁控濺鍍法 (sputter) 9 2.2.2 溶膠凝膠法(sol-gel) 14 第3章 實驗儀器與架構 16 3.1 實驗儀器 16 3.1.1 UV-VIS 16 3.1.2 X光繞射儀 17 3.1.3 四點探針 18 3.1.4 SEM 20 3.1.5 霍爾量測 21 3.1.6 螢光光譜量測裝置 23 3.2 實驗流程 25 3.2.1 基板清洗 26 3.2.2 薄膜濺鍍 27 3.2.3 氫退火 28 3.2.4 浸泡去離子水(DI-water) 28 第4章 實驗結果與分析 29 4.1 電性分析 29 4.1.1 改變RF Power(0~120W) 29 4.1.2 改變基板溫度(225~325℃)。 32 4.2 光特性分析 35 4.3 成份分析 52 4.3.1 XRD分析 52 4.3.2 PL分析 68 4.4 結構分析(SEM) 75 4.4.1 改變RF Power(0~120W) 75 4.4.2 改變基板溫度(225~325℃) 77 第5章 結論 80 參考文獻 81zh_TW
dc.subjectOxygen vacancyen_US
dc.titleSputtering of Zinc Oxide: Aluminum (ZnO:Al) Transparent Conducting Oxide Films by DC+RF Poweren_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:光電工程研究所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.