Please use this identifier to cite or link to this item:
標題: Fabricate of AZO transparent conductive film for thin film solar cell application
作者: 曾志忠
Tseng, Chih-Chung
關鍵字: sputtering;濺鍍;AZO;H plasma;solar cell;氧化鋅餐摻鋁;氫電漿;太陽電池
出版社: 光電工程研究所
引用: [1] T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells” APPLIED PHYSICS LETTERS 94, 063501 (2009). [2] S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, “Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes” Solar Energy Materials & Solar Cells 86 (2005) 385-397. [3] J. Hüpkes, B. Recha, O. Kluth, T. Repmann, B. Zwaygardt, J. Muller, R. Drese, M. Wuttig, “Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells” Solar Energy Materials & Solar Cells 90 (2006) 3054-3060. [4] C. J. Kim, D. Kang, I. Song, Jae C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J. C. Lee, Y. Park,”Highly Stable Ga2O3-In2O3-ZnO TFT for Active-Matrix Organic Light-Emitting Diode Display Application”, Electron Devices Meeting, 2006. IEDM ''06. International. [5] K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada, S. Niki, ”Improved External Efficiency InGaN-Based Light-Emitting Diodes with Transparent Conductive Ga-Doped ZnO as p-Electrodes”, Japanese Journal of Applied Physics Vol. 43, No. 2A, 2004, pp. L 180-L 182. [6] T. J. Hsueh , C. L. Hsu, S. J. Chang, I. C. Chen,” Laterally grown ZnO nanowire ethanol gas sensors”, Sensors and Actuators B 126 (2007) pp. 473-477. [7] Z.A. Ansari, R.N. Karekar , R.C. Aiyer,” Humidity sensor using planar optical waveguides with claddings of various oxide materials”, Thin Solid Films 305 (1997) pp. 330-335. [8] Y. S. Rim, S. M. Kim, K. H. Kim, “Effects of Substrate Heating and Film Thickness on Properties of Silver-Based ZnO Multilayer Thin Films” Japanese Journal of Applied Physics Vol. 47, No. 6, 2008, pp. 5022-5027. [9] T. Tohsophon, J. Hüpkes, H. Siekmann, B. Rech, M. Schultheis, N. Sirikulrat “High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells” Thin Solid Films 516 (2008) 4628-4632. [10] B. Y. Oh, M. C. Jeong, J. M. Myoung, “Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films” Applied Surface Science 253 (2007) 7157-7161. [11] J. Hüpkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M. Wuttig, “Material study on reactively sputtered zinc oxide for thin film silicon solar cells” Thin Solid Films 502 (2006) 286 - 291. [12] J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates” Thin Solid Films 518 (2010) 3054-3058. [13] J. Krc, M. Zeman, O. Kluth, F. Smole, M. Topic, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells” Thin Solid Films 426 (2003) 296-304. [14] N. Kawamoto, M. Fujita, T. Tatsumi, Y. Horikoshi, “Growth of ZnO on Si Substrate by Plasma-Assisted Molecular Beam Epitaxy” Jpn. J. Appl. Phys. 42 (2003) 7209. [15] J.L. Zhao, X.M. Li, J.M. Bian, W.D. Yu, X.D. Gao, “Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition (PLD)” J. Crystal Growth 276 (2005) 507. [16] S. Mandal, M.L.N. Goswami, K. Das, A. Dhar, S.K. Ray, “Temperature dependent photoluminescence characteristics of nanocrystalline ZnO films grown by sol-gel technique” Thin Solid Films 516 (2008) 8702. [17] K. Haga, T. Suzuki, Y. Kashiwaba, H. W atanabe, B. P. Zhang, Y. Segawa,” High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD”, Thin Solid Films 433 (2003) pp. 131-134. [18] R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchiele, J.R. Ramos-Barrado,” Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis”, Thin Solid Films 426 (2003) pp. 68-77. [19] D. H. Kim, M. R. Park, G. H. Lee, “Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering “, Surface & Coatings Technology 201 (2006) pp. 927-931. [20] A .M. K. Dagamseh, B. Vet, F.D. Tichelaar, P. Sutta, M. Zeman,” ZnO:Al films prepared by rf magnetron sputtering applied as back reflectors in thin-film silicon solar cells”, Thin Solid Films 516 (2008) pp. 7844-7850. [21] J. Lee, D. Lee, D. Lim, K. Yang, “Structural, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications”, Thin Solid Films 515 (2007) 6094-6098. [22] C. Jeong, H. S. Kim, D. R. Chang, K. Kamisako, “Effect on Al2O3 Doping Concentration of RF Magnetron Sputtered ZnO:Al Filmsfor Solar Cell Applications”, Japanese Journal of Applied Physics Vol. 47, No. 7, 2008, pp. 5656-5658. [23] D. Song, “Effects of rf power on surface-morphological, structural and electrical properties of aluminium-doped zinc oxide films by magnetron sputtering” Applied Surface Science 254 (2008) 4171-4178. [24] M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, J. Y. Leem “Improvement in crystallinity and optical properties of ZnO epitaxial layers by thermal annealed ZnO buffer layers with oxygen plasma” Journal of Crystal Growth 311 (2009) 3568-3572. [25] H. L. Hartnagel, A.K. Jagadish, "Semiconducting Transparent Thin Films",(1995),published by Institute of Physics Publishing. [26] W. J. Jeong, S. K. Kim, G. C. Park “Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell” Thin Solid Films 506- 507 (2006) 180 - 183. [27] B. H. Choi, H. B. Im, “Optical and electrical properties of SnOx thin films made by reactive r.f. magnetron sputtering”, Thin Solid Films 193/194, (1990) 712. [28] J. Ding, H. Chen, X. Zhao, S. Ma “Effect of substrate and annealing on the structural and optical properties of ZnO:Al films” Journal of Physics and Chemistry of Solids 71 (2010) 346-350. [29] B.E. SK. F. Berggren, Z. C. Jim, I. Hamberg, C.G. Granqvist, ”Band-gap tailoring of ZnO by means of heavy Al doping”, Physical review B , ernelius, Volume 37, Number 17. [30] D. S. Richerby, A. Matthews, “A Handbook of Surface Engineering, Chapman and Hill, New Work”, Advanced Surface Coatings 1991, P. 92-100. [31] B. Chapman, “Glow Discharge Processes”, John Wiley and Sons, New York, 1980. [32] S. A. Campbell, “The Science and Engineering of Microelectronic Fabrication”, 2nd edition, Oxford University Press, 2001. [33] S. Fernández, A. Martínez-Steele, J.J. Gandía, F.B. Naranjo, “Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications” Thin Solid Films 517 (2009) 3152-3156. [34] S. Fernández, F.B. Naranjo, “Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications” Solar Energy Materials and Solar Cells Volume 94, Issue 2, February 2010, Pages 157-163. [35] M. Ohring, “Materials science of thin films”, Academic Press. [36] Smith, “Thin-Film Deposition-Principe & Practice”, McGraw Hill, 1999. [37] G. Haacke, “New figure of merit for transparent conductors”, Chemical Research Division, American Cyanamid Company, Stamford, Connecticut 06904. [38] R. Das, T. Jana, S. Ray, “Degradation studies of transparent conductingoxide: a substrate for microcrystalline silicon thin film solar cells”, Solar Energy Materials & Solar Cells 86 (2005) 207-216. [39] T. Soderstrom, F.-J. Haug, X. Niquille, C. Ballif, “TCOs for Nip Thin Film Silicon Solar Cells”, Appl. (2009); 17:165-176. [40] J. C. Leea, V. Duttaa, J. Yoob, J. Yib, J. Songa, K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO:Al front transparent conduction oxide”, Superlattices and Microstructures 42 (2007) 369-374. [41] V. Sittinger, F. Ruske, W. Werner, B. Szyszka, B. Rech, J. Hupkes, G. Schope, H. Stiebig, “ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells”, Thin Solid Films 496 (2006) 16 - 25.
In this experiment, we used RF sputtering system to deposited AZO thin films on Corning 1737 glass and PET plastic substrate. We investigated the better properties for the thin films with different RF power (50-150 W) and substrate temperature (RT-200 ℃). In order to increase the efficiency of solar cell, diluted HCl wet etching can trap incident light in the solar cell, and then, hydrogen plasma treatment can improve the resistivity of AZO thin films, which increase the short circuit current and transfer efficiency.
AZO thin films will be bombarded acutely with too highly RF power, and cause the quality of thin films decreased. Particularly in PET substrate, it caused the substrate distortion obviously. Therefore, we set 100 W as the fixed RF power. The (002) diffraction angle of XRD analysis shift to higher degree because the crystal arranged regularly when the substrate temperature was higher than room temperature, and then decrease the internal stress of the thin films. The best electrical at as-deposition is 1.23×10-3 Ω-cm. The average transmittance exceeded 85% without substrate type in the visible light even the thickness of thin films was 900 nm.
After 30 second of 0.2% diluted HCl wet etching, the resistivity of AZO thin films didn't changed obviously. The main differences were the thickness and surface morphology of the thin films. However, after hydrogen plasma treatment can let resistivity reach to 8.14×10-4 Ω-cm. In the optical properties, optical band gap had blue shift phenomenon because increase the carrier concentration. And then, increase absorption at intrinsic layer in the solar cell because more low-wavelength incident light through AZO thin films.
Finally, we used treated AZO thin films compared the differences with ITO glass which etching by 0.5% diluted HCl 10 seconds and Asahi FTO glass. Subsequently, grew p-i-n silicon thin films on the TCO respectively. It can seen that AZO thin films after diluted HCl and hydrogen plasma treated have more 20% short circuit and 15% transport efficiency than only treated by diluted HCl.
其他識別: U0005-0508201012124900
Appears in Collections:光電工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.