Please use this identifier to cite or link to this item:
標題: a-Si1-xGex:H/a-Si(Ge):H多層膜太陽電池
a-Si1-xGex:H/a-Si(Ge):H multilayer solar cells
作者: 侯淳耀
Hou, Chun-Yao
關鍵字: 氫化非晶矽鍺薄膜太陽電池;Hydrogenated amorphous silicon germanium thin film solar cells
出版社: 光電工程研究所
引用: [1] J. Chevallier et. al., Solid State Commun., 24 (1977), 867-869 [2] X. Liao, Conf Rec IEEE Photovoltaic Spec Conf, 31(2005), 1447-1449. [3] Aad Gordijn et al., IEEE Transactions On Electron Devices Vol. 49, 5 (2002). [4] Y.H. Shing et. al., Conf Rec IEEE Photovoltaic Spec Conf, 1(1988), 224-228. [5] K. Tanaka et al., MRS Symp. Proc. 70, 245 (1986). [6] L. Yang et al., MRS Symp. Proc. 149, 497 (1989). [7] A. Catalano et al., Solar Cells 27, 25 (1989). [8] M. Shima et al., J. Non-Sryst. Solids. 227-230, 442 (1998). [9] 郭寶曾, China Journal Net Series I, 4(1991), 22-28. [10] K. H. Jun et. al., Sol. Energ. Mat. Sol. C., 74 (2002), 357. [11] Y. Ashida et. al., Conf Rec IEEE Photovoltaic Spec Conf ,2 (1991), 1352-1356. [12] M. Sadamoto et. al., J Non-Cryst Solids,198–200 (1996), 1105–1108. [13] M. N. van den Donker et. al., Thin Solid Films, 515, (2007)7455. [14] W. Chao-Chun1 et. al., Curr. Appl. Phys.,11 (2011), 50-53. [15] A. Fedala, Mater. Sci. Semicond.Process. 9 (2006), 690-693. [16] P. Agarwal et. al., J. Non-Cryst. Solids, 299 (2002), 1213-1218. [17] T. Matsui et al., Appl. Phys. Express ,1(2008),0315011-0315013.
The different size of Si and Ge atom in hydrogenated amorphous silicon germanium (a-Si1-xGex:H) thin-film solar cells is not easy to form good network that generates many defects and deteriorate the quality of the film. Therefore, control the arrangement of Si and Ge atoms can help to improve the quality of the film, which can be done by multilayer deposition. In this thesis, GeH4 is pulse added into chamber and use residue GeH4 to fabricate a-Si1-xGex:H/a-Si(Ge):H multilayer to control the arrangement of Si and Ge atoms to explore the effect on the performance of a-Si1-xGex: H solar cells.
The 13.56 MHz pulse-wave modulated plasma-enhanced chemical vapor deposition and with different GeH4 to SiH4 flow ratio and pulse adding GeH4 is used to fabricate intrinsic layers of a-Si1-xGex:H thin-film solar cells. The i-layer structures are including single-layer a-Si1-xGex:H and a-Si1-xGex:H/ a-Si(Ge):H multilayer.
Single a-Si1-xGex:H i-layer solar cells are fabricated with [GeH4]/[SiH4] = 0.11 and 0.32 ratio and change the thickness of intrinsic layers to study the effects of different Ge/Si contents and i-layer thickness on the electrical properties of solar cells. A-Si1-xGex:H/a-Si(Ge):H multilayer solar cell are also fabricate by [GeH4]/[SiH4] = 0.11 and 0.32 gas ratio. For gas ratio of 0.11, A sublayer (GeH4 flow of 3.2 sccm) thickness is 1.1 nm, and B sublayer (GeH4 off) thickness is changed from 0.55 nm to 1.1 nm. The total i-layer thickness is fixed at 180 nm. For gas ratio of 0.32, A sublayer (GeH4 flow of 3.2 sccm) thickness is 3 nm, and B sublayer (GeH4 off) thickness is increased from 0.087 nm to 3 nm, that the i-layer total thickness is fixed at 70 nm.
The current-voltage and spectral response results show that, for single i-layer a-Si1-xGex:H solar cells, increasing [GeH4] / [SiH4] gas ratio with the same thickness of i-layer increase Ge/Si content can enhance the response in the long-wavelength, but the increase of defects in the film also decrease the efficiency. Reduce the i-layer thickness can enhance internal electric field to increase the carrier collection and conversion efficiency. For a-Si1-xGex:H/ a-Si(Ge):H multilayer solar cells, B sublayer is deposited by residue GeH4. Increasing B sublayer thickness can raise silicon content gradually, thus long-wavelength response is gradually reduced. Arrangement of Si and Ge atoms can be effectively adjusted by increasing the thickness of B sublayer, which can control the spectral response moved from long-wavelength to short-wavelength, and decrease short-circuit current density, increasing open- circuit voltage, and fill factor.
For high Ge content of a-Si1-xGex:H solar cell, using a-Si1-xGex:H/ a-Si(Ge):H multilayer structure can improve the electrical properties and still has significant response in long-wavelength region.

本論文使用射頻13.56 MHz脈波調變電漿輔助化學氣相沉積技術並以不同鍺烷/矽烷流量比及間斷加入鍺烷之方法製作不同矽/鍺含量本質層結構的氫化非晶矽鍺薄膜太陽電池。製作的結構分別為a-Si1-xGex:H單層膜及a-Si1-xGex:H/a-Si(Ge):H多層膜的本質層。
a-Si1-xGex:H單層膜太陽電池以[GeH4]/[SiH4] = 0.11及0.32氣體比例製作,比較不同矽/鍺含量及本質層厚度對太陽電池特性的影響。a-Si1-xGex:H/a-Si(Ge):H多層膜太陽電池亦分為[GeH4] / [SiH4] = 0.11及0.32兩種系列。前者固定A子層(鍺烷流量為3.2 sccm)厚度為1.1 nm,而B子層(鍺烷關閉)厚度分成1.1 nm和0.55 nm,固定本質層厚度為180 nm;後者固定A子層(鍺烷流量為3.2 sccm)厚度為3 nm,而B子層(鍺烷關閉)厚度由0.087 nm增加至3 nm,固定本質層厚度為70 nm。
其他識別: U0005-2908201110293200
Appears in Collections:光電工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.