Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2983
標題: 調變氣體配比製作氫化非晶矽薄膜太陽電池
Fabrication of hydrogenated amorphous silicon thin-film solar cells with modulation gas ratio
作者: Ho, Che-Yi
何哲毅
關鍵字: hydrogenated amorphous silicon;氫化非晶矽;solar cell;太陽電池
出版社: 光電工程研究所
引用: [1] Y. Watanabe, J. Phys. D:Appl. Phys., 39, R329 (2006) [2] J. Koh et al., Appl;. Phys. Lett., 73, 1526 (1998) [3] C. Longeaud et al., Journal of Non-Crystalline Solids, 227-230, 96 (1998) [4] O. Vetterl et al., Solar Energy Materials and Solar Cells, 62, 97 (2000) [5] S.W. Kwon et al., Journal of Non-Crystalline Solids, 352, 1134 (2006) [6] G. Elzakker et al. Thin Solid Films, 515, 7460 (2007) [7] H.F. Sterling and R.C.G. Swann, Solid-State Electronics, 8, 653 (1965) [8] D.E. Carlson and C.R. Wronski, Appl;. Phys. Lett., 28, 671 (1976) [9] Y. Tawada and H. Yamafishi, Solar Energy Materials and Solar Cells, 66, 95 (2001) [10] S. Guha, Solar Energy, 77, 887 (2004) [11] B. Yan et al, Mater. Res. Soc. Symp. Proc., 1066-A03-03, 61 (2008) [12] D.L. Staebler and C.R. Wronski, Appl;. Phys. Lett., 31,292 (1977) [13] G.V. Elzakker et al. Thin Solid Films, 511, 253 (2006) [14] R.W. Collins et al. Solar Energy Materials and Solar Cells, 78, 143 (2003) [15] G. Yue et al. Mater. Res. Soc. Symp. Proc., 862, A11.3.1 (2005) [16] A. Chowdhury, S. Mukhopadhyay and S. Ray, Solar Energy Materials and Solar Cells, 92, 385 (2008) [17] M. Sadamoto et al. Journal of Non-Crystalline Solids, 198, 1106 (1996) [18] Y. Ashida et al. Conference Record of the Twenty Fourth IEEE, 453 (1994) [19] M.Ito et al. 3rd World Conference on Photovoltaic Energy Conversion, 1592 (2003) [20] M.Ito et al. Journal of Non-Crystalline Solids, 338, 698 (2004) [21] S. Sriraman et al. J. Appl. Phys., 100, 053514 (2006) [22] Y. Hishikawa et al. Solar Energy Materials and Solar Cells, 34, 303 (1994) [23] J. Woerdenweber et al. Appl;. Phys. Lett., 96, 103505 (2010)
摘要: 
In this study, 13.56 MHz plasma-enhanced chemical vapor deposition (PECVD) with pulse-wave modulation of RF plasma is used to fabricate hydrogenated amorphous silicon (a-Si:H) single i-layer by changing total gas flow, and a-Si:H/hydrogenated protocrystalline silicon (a-Si:H/pc-Si:H) multilayer i-layer by SiH4 pulse-wave adding method of p-i-n silicon thin-film solar cells.

The total gas flow of (50, 100, 150 and 200 sccm) is used to fabricate single i-layer of solar cells. Increasing total gas flow, the density of large molecules of Si-related radicals in chamber starts to increase with increasing the supply of SiH4. The deposition of there radicals can induce more defect densities in the film, thus, the ideal factor, fill factor and energy conversion efficiency of solar cells are decreased. Suitable total gas flow shall be carefully selected to obtain high energy conversion efficiency of solar cells.

Using SiH4 pulse-wave adding method to fabricate a-Si:H/pc-Si:H multilayer i-layer solar cells, A-sublayer is an a-Si:H film and B-sublayer is a pc-Si:H film, which is deposited by residue of SiH4, and the total gas flow is fixed at 50 and 200 sccm, respectively. The influence of deposition time of B-sublayer on electrical properties of solar cells is investigated.

For total gas flow of 50 sccm series, the current density, fill factor and energy conversion efficiency of a-Si:H/pc-Si:H multilayer solar cells are decreased as B-sublayer deposition time increased. The concentration of residue SiH4 in the chamber is gradually decreased and the hydrogen gas flow is constant. Thus, the hydrogen dilution ratio is increased, and the structure of the film is gradually changed from amorphous to protocrystalline structure. The current density, fill factor and energy conversion efficiency of solar cells are decreased as the thickness of B-sublayer with protocrystalline structure increased.

For total gas flow of 200 sccm series, due to high flow, the SiH4 residence time is shortened, the B-sublayer thickness is very thin that the structure can not be changed to protocrystalline structure, therefore, the electrical properties of solar cells is less affected by inserting of B-sublayer.

本論文使用射頻13.56 MHz脈波調變電漿輔助化學氣相沉積(Pulsed-PECVD)技術沉積氫化非晶矽薄膜太陽能電池,以調變總氣體流量之方式製作單一本質層的氫化非晶矽太陽電池及以脈波間斷加入矽烷之方法製作a-Si:H/pc-Si:H多層膜太陽電池。

調變不同總氣體流量(50、100、150、200 sccm)製作氫化非晶矽薄膜太陽能電池的本質層,探討其對太陽電池特性之影響。電流-電壓特性和量子效率量測結果顯示,提高總氣體流量增加矽烷氣體之供應量,使得高矽烷結構之粉塵容易產生,讓薄膜缺陷密度增加,導致降低理想因子和填充因子,太陽電池的光電轉換效率也隨之下降。因此改善太陽電池效率,必須使用適當的總氣體流量。

以脈波間斷加入矽烷製作a-Si:H/pc-Si:H的多層膜太陽電池,總氣體流量分別為50 及200 sccm。A-子層(A-sublayer)為氫化非晶矽薄膜,B-子層(B-sublayer)使用在腔體滯留的矽烷(SiH4)進行薄膜的沉積,探討B子層鍍膜時間對於太陽電池的電性特性影響。

總氣體流量固定為50 sccm,以脈波間斷加入製作的a-Si:H/pc-Si:H多層膜太陽電池的研究中,其太陽電池之短路電流密度、填充因子及轉換效率會隨著B-子層厚度增加而逐步下降,其原因為B子層之沉積主要是使用滯留於腔體之矽烷氣體,隨著B子層沉積時間的增加,腔體內部之矽烷濃度會逐漸下降,此時氫氣的供應並未改變,因此,沉積室之氫稀釋比例將會逐漸上升,而沉積之薄膜結構將會由非晶矽結構逐漸轉變成為原晶矽之薄膜結構,當原晶矽之薄膜結構的厚度增加時,會逐步減少短路電流密度、填充因子及降低光電轉換效率。

總氣體流量固定為200 sccm,以脈波間斷加入製作的a-Si:H/pc-Si:H多層膜太陽電池的研究中,因其擁有較高之總氣體流量,故其腔體滯留時間縮短,使得B子層之薄膜厚度減少,此時,B子層沉積厚度不足以讓非晶矽結構轉換至原晶矽結構時,其太陽電池的特性變化並不明顯。
URI: http://hdl.handle.net/11455/2983
其他識別: U0005-2908201110313700
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.