Please use this identifier to cite or link to this item:
標題: P層結構特性對於本質氫化微晶矽薄膜品質與太陽電池效能的影響
Influence of the p-layer structural properties on intrinsic hydrogenated microcrystalline silicon thin film quality and solar cells performance
作者: Li, Chien-Hui
關鍵字: 超高頻化學氣相沉積;VHF-PECVD;p型氫化微晶矽;氫化微晶矽薄膜太陽電池;p-type hydrogenated microcrystalline silicon;hydrogenated microcrystalline silicon thin film solar cells
出版社: 光電工程研究所
引用: [1] R.W. Collins, A.S. Ferlauto, G.M. Ferreira, Chi Chen, Joohyun Koh, R.J. Koval, Yeeheng Lee, J.M. Pearce, C.R. Wronski,. Solar Energy Materials & Solar Cells 78 (2003) 143-180 [2] O. Vetter, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth , A. Lambertz, A. Muck, B. Rech and H. Wagner “Intrinsic microcrystalline silicon : A new material for photovoltaics” , Solar Energy Materials & Solar Cells 62 p.97-108 , (2000) [3] A.V. Shah, J. Meier and U. Graf, Sol. Energy Mater. Sol. Cells, 78 (2003) 469 [4] A. Matsuda, J. Non-Cryst. Solids, 1 (2004) 338-340 [5] Y. Mai, S. Klein and F. Finger, Appl. Phys. Lett., 85 (14) (2004) 2839 [6] U. Kroll , J. Meier , P. Torres , J. Pohl , A. Shah,Journal of Non-Crystalline Solids 227-230 (1998) 68-72 [7] L. Feitknecht, O. Kluth, Y. Ziegler, X. Niquille, P. Torres, J. Meier, N. Wyrsch and A. Shah“Microcrystalline n-i-p solar cells deposited at 10 Å/sec by VHF-GD” [8] Takuya MATSUI, Michio KONDO ,Akihisa MATSUDA, Jpn. J. Appl. Phys. Vol. 42 (2003) Pt. 2, No. 8A [9] Yuan-Min Li, Liwei Li, J.A. Anna Selvan, Alan E. Delahoy and Roland A. Levy. Thin Solid Films, Volume 483, Issues 1-2, 1 July 2005, Pages 84-88. [10] Hou Guo-Fu, Xue Jun-Ming,Guo Qun-Chao, Sun Jian, Zhao Ying, GengXin-Hua, and Li Yi-Gang, Chin. Phys. Soc. and IOP Publishing Ltd, Vol 16 No 2(2007) [11] Yaohua Mai, Microcrystalline silicon layers for thin film solar cells prepared with Hot Wire Chemical Vapour Deposition and Plasma Enhanced Chemical Vapour Deposition, Institute of Energy Research (IEF) Photovoltaics (IEF-5) Jül-4254 [12] P. Roca i Cabarrocas, N. Layadi, T. Heitz, B. Dre´ Villon, I. Solomon, Appl. Phys. Lett. 66 (26), 26 June 1995 [13] Takashi Fujibayashi, Michio Kondo, JOURNAL OF APPLIED PHYSICS 99, 043703(2006) [14]Wanjiao Böttler, Vladimir Smirnov, Andreas Lambertz, Jürgen Hüpkes, and Friedhelm FingerPhys. Status Solidi C 7, No. 3-4, 1069-1072 (2010) [15] J.K. Rath, R.E.I. Schropp, Solar Energy Materials and Solar Cells 53 (1998) 189-203 [16] S. Hamma, P. Roca i Cabarrocas, Solar Energy Materials & Solar Cells 69 (2001) 217-239 [17] P. Kumar , M. Kupich, D. Grunsky, B. Schroeder, Thin Solid Films 501 (2006) 260-263 [18] S.R. Jadkar, Jaydeep V. Sali, M.G. Takwale, D.V. Musale,S.T. Kshirsagar,Solar Energy Materials & Solar Cells 64 (2000) 333-346 [19] Steve Reynolds, Reinhard Carius , Friedhelm Finger , Vladimir Smirnov , Thin Solid Films 517 (2009) 6392-6395 [20] M. Boccard, P.Cuony, M.Despeisse, D.Domine, A.Feltrin, N.Wyrsch, C.Ballif, Sol. Energy Mater. Sol. Cells(2010),doi:10.1016/j.solmat.2010.04.043 [21] M. Python, O.Madani,D.Domine , F.Meillaud,E.Vallat-Sauvain , C.Ballif, Solar Energy Materials & Solar Cells 93 (2009) 1714-172
本論文以40.68 MHz超高頻化學氣相沉積(VHF-PECVD)製作改變摻雜氣體比例及氫稀釋比例的p型氫化微晶矽(μc-Si:H)薄膜及i-layer的氫稀釋比例的p-i-n氫化微晶矽太陽電池。藉由拉曼光譜儀(Raman spectroscopy)、X光繞射儀(X-Ray Diffraction)、掃描式電子顯微鏡(Scanning Electron Microscopy)、橢圓儀(Spectroscopic Ellipsometry)、電流-電壓量測儀器(I-V)來分析薄膜與太陽電池的結構、光學及電學特性。
p型μc-Si:H薄膜以改變摻雜氣體比例(RB=B2H6/SiH4=0.25 ~ 1.5%)及氫稀釋比例(R = H2/SiH4 = 50 ~ 100)製作。結果顯示當RB增加時,其結晶比例(Xc)由14%降至0%,結構則由非晶及微晶混合結構轉變為非晶結構。而當R上升時,Xc由非晶結構的0%轉變為非晶及微晶混合結構的17%。
本質μc-Si:H薄膜以調變氫氣稀釋比例(R = 50 ~ 70)製作。本質μc-Si:H薄膜除了受到不同沉積條件的影響,也會受到p層基底強烈的影響。沉積在非晶結構的p層上時,p-i-n太陽電池則為非晶結構,有抑制本質μc-Si:H薄膜結晶形成的情形;而沉積在非晶及微晶混合結構的p層上時,本質μc-Si:H薄膜則有被誘發結晶析出之情形,因此p型μc-Si:H薄膜對於製作p-i-n μc-Si:H太陽電池結晶結構有明顯的影響。
本質μc-Si:H薄膜沉積在不同摻雜比例的p層上,當p層的RB增加,進而影響p-i-n μc-Si:H太陽電池的Xc從58%降至13%;而本質μc-Si:H薄膜沉積在不同R的p層上,當p層的R增加,p-i-n μc-Si:H太陽電池的Xc從11%增加至62%。
結果顯示p層的Xc越高,則p-i-n μc-Si:H太陽電池的Xc也越高,且p-i-n μc-Si:H太陽電池的短路電流也越高,但開路電壓、填充因子與效率則會越低。
當本質μc-Si:H薄膜的R增加時,p-i-n μc-Si:H太陽電池的Xc從11%上升至75%,且p-i-n μc-Si:H太陽電池的Xc越高,使得孵育層厚度越薄。而較厚的孵育層造成太陽電池的填充因子與轉換效率下降。當R=70時,孵育層厚度最薄,此時有最高效率的p-i-n μc-Si:H太陽電池轉換效率為4.0%,其填充因子、短路電流密度分別為40.39 %、25.90 mA/cm2及0.38 V。

In this thesis,the p-type hydrogenated microcrystalline silicon (μc-Si:H) films with varying doping gas flow ratio and hydrogen dilution ratio, the intrinsic μc-Si:H films with varying the hydrogen dilution ratio, and applied them to p-i-n μc-Si:H solar cells are fabricated by 40.68 MHz very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). Raman spectrometry, x-ray diffraction (XRD), cross-section scanning electron microscopy (SEM), spectroscopic ellipsometry (SE) and I-V measurement are employed to analysis the structural, optical and electrical properties of thin films and solar cells, respectively.
P-type μc-Si:H thin films are fabricated by doping gas flow ratio (RB= B2H6/SiH4 = 0.25 ~ 1.5%) and hydrogen dilution ratio (R= H2/SiH4 = 50 ~ 100). As RB increases, the crystalline volume ratio (XC) of p-layers is decreased from 14% to 0, and the structure changes from the amorphous with microcrystalline (a + μc) mix-phase into the fully amorphous phase. For increasing R, and the structure is change from the fully the amorphous phase into the (a + μc) mix-phase, the XC of p-layers is decreased from 0 to 17%.
Intrinsic μc-Si:H thin films are fabricated with varying the hydrogen dilution ratio R= 50 ~ 70. The crystal phase of intrinsic μc-Si:H thin films is not only affected by different deposition condition, but also strongly influenced by different crystal phase of p-layers. While i-layers deposit on amorphous p-layer, the p-i-n solar cells is amorphous structure, the a-Si:H p-layers suppress the crystallization of i-layers. The solar cell that i-layers deposit on mix-phase p-layer is microcrystalline structure, mix-phase p-layer can induce the crystallization of i-layers. The results indicate that crystal phase of the μc-Si:H p-layer has an important influence on the crystalline structure formation of μc-Si:H solar cells.
Intrinsic μc-Si:H thin films deposit on p-layers with different doping gas flow ratio, the increasing RB results in the solar cells XC is decreased from 58% to 13%. Intrinsic μc-Si:H thin films deposit on p-layers with different hydrogen dilution ratio, the increasing R result in the solar cells XC is increased from 11% to 62%.
The μc-Si:H solar cells fabricated with higher XC of p-layer exhibit high short-circuit current density, but have low open-circuit voltage, fill factor, and efficiency.
The μc-Si:H solar cells fabricated with increasing R of i-layers, the XC of solar cells is increased from 11% to 75%. High XC of solar cells corresponds to the small thickness of incubation layers. The thick incubation layer deteriorates the fill factor and the efficiency of solar cell. For μc-Si:H solar cells with R of i-layer is 70, the thickness of incubation layer is thinnest, and the efficiency, fill factor, short-circuit current density, and the open-circuit voltage is about 4.0%, 40.39%, 25.90 mA/cm2, and 0.38 V, respectively.
其他識別: U0005-2808201017561600
Appears in Collections:光電工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.