Please use this identifier to cite or link to this item:
標題: Study on Low-Voltage a-IGZO TFT
作者: Liu, Chang-Xin
關鍵字: 非晶氧化物半導體;a-IGZO;低電壓;薄膜電晶體;low voltage;TFT
出版社: 光電工程研究所
引用: [1] Hideo Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol.352, pp. 851-858 (2006) [2] E.P. Denton, H. Rawson, J.E. Stanworth “Vanadate Glasses,” Nature, vol. 173, pp. 1030-1032 (1954) [3] Hideya Kumomi, Kenji Nomura, Toshio Kamiya, Hideo Hosono, “Amorphous oxide channel TFTs”, Thin Solid Films, vol. 516, pp.1516-1522 (2008) [4] R.L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility,” J. Appl. Phys, vol. 95, pp. 5813-5819 [5] 電子工程專輯(Electronic Engineering Times)/ (EDA/IC設計), 趙祖佑,”應用更多元性電子技術開啟產業新商機” [6] Hideo Hosono “Transparent Amorphous Oxide Semiconductors (TAOS) for High Performance TFTs,” SID (2007) [7] Toshio Kamiya, Kenji Nomura, and Hideo Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping*,” J. Disp. Technol., vol. 5, pp. 468-483 (2009) [8] T. Kamiya, K. Nomura, H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping” J. Disp. Technol., vol. 5, pp. 273-288 (2009). [9] Toshio Kamiya and Hideo Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., vol. 2, pp. 15–22 (2010) [10] 陳怡誠, “高介電薄膜簡介,” (2002) [11] Jin-Seong Park, Jae Kyeong Jeong,a_ Yeon-Gon Mo, Hye Dong Kim, and Chang-Jung Kim, “Control of threshold voltage in ZnO-based oxide thin film Transistors,” Appl. Phys. Lett., vol 93, 033513 (2008) [12] Jeong-Min Lee, In-Tak Cho, Jong-Ho Lee, and Hyuck-In Kwon,” Full-Swing InGaZnO Thin Film Transistor Inverter with Depletion Load,” Jpn. J. Appl. Phys., vol. 48, 100202 (2009) [13] A.C. Tickle, “Thin-Film Transistors -A New Approach to Microelectronics,” (1969) [14] S. Martin, C.-S. Chiang, J.-Y. Nahm, T. Li and J. Kanicki, and Y. Ugai, “Influence of the Amorphous Silicon Thickness on Top Gate Thin-Film Transistor Electrical Performances,” Jpn. J. Appl. Phys., vol. 40, pp. 530-537 (2001) [15] P. Barquinha , A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato,” Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide,” J. Non-Cryst. Solids, vol. 352, pp. 1749–1752 (2006) [16] Donald A.Neamen, “An Introduction to Semiconductor Devices,” pp. 236-239 [17] Wikipedia/redox [18] Smita Sarkar, Arun Suresh, Frank B. Myers, John F. Muth, and Veena Misra, “Modulating indium gallium zinc oxide transistor characteristics with discrete redox states of molecules embedded in the gate dielectric,” Appl. Phys. Lett., vol. 92, 223304 (2008) [19] Jae Kyeong Jeong, Hyun-Joong Chung, Yeon-Gon Mo, and Hye Dong Kim, “Comprehensive Study on the Transport Mechanism of Amorphous Indium-Gallium-Zinc Oxide Transistors,” J. Electrochem. Soc., vol. 155, pp. H873-H877 (2008) [20] Yasuhiro Shimura, Kenji Nomura, Hiroshi Yanagi, Toshio Kamiya, Masahiro Hirano, Hideo Hosono,” Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes,” Thin Solid Films, vol 516, pp. 5899-5902 (2008) [21] Noh JH, Kim CS, Ryu Sy, et al., “Low-voltage driven bottom-gate amorphous indium-gallium-zinc-oxide thin-film transistors with high dielectric constant oxide/polymer double-layer dielectric,” Jpn. J. Appl. Phys. 1, vol 46, pp. 4096-4098, (2007). [22] Klauk H, Halik M, Zschieschang U, et al. “High-mobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys., vol 92, pp. 5259-5263 (2002) [23] Hisato Yabuta,a_ Masafumi Sano, Katsumi Abe, Toshiaki Aiba, Tohru Den, and Hideya Kumomi, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, 112123 (2006) [24] Chulho Jung, Duckjin Kim, Yong Kyu Kang, and Dae Ho Yoon,“Effect of Heat Treatment on Electrical Properties of Amorphous Oxide Semiconductor In-Ga-Zn-O Film as a Function of Oxygen Flow Rate,” Jpn. J. Appl. Phys., vol. 48 (2009) [25] Wantae Lim, S.-H. Kim, Yu-Lin Wang, J. W. Lee, D. P. Norton, and S. J. Pearton “Stable room temperature deposited amorphous InGaZnO4 thin film transistors,” J. Vac. Sci. Technol. B, vol. 26, pp. 959-962 (2008) [26] Gun Hee Kim, Woong Hee Jeong, and Hyun Jae Kim, “Electrical characteristics of solution-processed InGaZnO thin film transistors depending on Ga concentration,” Phys. Status Solidi, vol. 207, pp. 1677-1679 (2010) [27] Gun Hee Kim, Byung Du Ahn, Hyun Soo Shin, Woong Hee Jeong, Hee Jin Kim, and Hyun Jae Kim, “Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors,” Appl. Phys. Lett., vol 94, 233501 (2009) [28] C.H. Jung , D.J. Kim , Y.K. Kang , D.H. Yoon, “Transparent amorphous In-Ga-Zn-O thin film as function of various gas flows for TFT applications,” Thin Solid Films, vol. 517, pp. 4078–4081 (2009)
In this experiment, we use (PVP) as gate dielectric at beginning. But TFTs always appear large leakage current. In order to find out the electric property of (a-IGZO) in TFTs, we replaced (PVP) by inorganic (HfO2) as dielectric layer. For (a-IGZO) electric property, we change the RF power instead of adjusting oxygen ratio. Finally, the gold electrode of TFTs is replaced by aluminum. The performance of TFTs is increased. The mobility is about 5 cm2/Vs, SS 0.48 V/dec and on/off six orders. By adjusting the thickness of (a-IGZO), threshold voltage would be shifted. We have successfully shifted operation voltage below 5 V. The low voltage TFTs has been demonstrated.

在本實驗中,首先以高分子共聚物(PVP)為絕緣層製做薄膜電晶體,發現電晶體一直有大漏電流的問題,為了找到主動層(a-IGZO)薄膜電性適用於電晶體的操作範圍,我們改以無機高介電材料(HfO2)當絕緣層,搭配沉積(a-IGZO)薄膜時,不通入氧氣,而是以改變濺鍍機的瓦數,藉以調節薄膜的電性為主製作電晶體,最後,在電極方面使用鋁取代金作為電極,發現電晶體的特性有個很大幅度的提升,電子遷移率平均可以到達5 cm2/Vs, 次臨界擺幅為0.48 V/dec,電流開關比可差到6個層級,臨界電壓可透過改變(a-IGZO)的厚度作調整,我們已經把臨界電壓調到平均低於5V,落實低電壓電晶體的驅動。
其他識別: U0005-3007201000033700
Appears in Collections:光電工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.