Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2990
標題: 以溶膠凝膠法製作Zn1-xSnxO透明薄膜特性研究
Investigation on the characteristics of Zn1-xSnxO transparent films by Sol-gel method
作者: 謝育達
Hsieh, Yu-Tar
關鍵字: 氧化鋅;ZnO;溶膠凝膠法;旋轉塗佈法;摻雜濃度及燒結溫度;sol-gel method;spin coating;doping concentration;sintering temperature
出版社: 光電工程研究所
引用: 1. 楊明輝,"透明導電膜",藝軒圖書出版社,(2006). 2. 李紅霞,劉 宏,王繼揚,李 霞,崔紅梅,“氧化物透明導電膜的研究進展”,山東大學晶體材料國家重點實驗室,第35卷,pp.1091-1093,(2004). 3. 韋志仁,王偉偉,蔡淑珍,付三玲,李 軍,劉 超,董國義,“Sn摻雜對ZnO晶體形貌和磁性的影響”,人工晶體學報,第36卷第1期,pp.81-84, (2007). 4. 白翠彩,劉秀軍,郭玉高,“錫摻雜氧化鋅薄膜乙醇氣敏性的研究”,天津工業大學學報,第31卷第1期,pp.13-16,(2012). 5. 孫惠娜,碩士論文,“溶膠—凝膠法製備ZnO:Sn(TZO)透明導電薄膜及其性能研究”,蘭州大學,(2010). 6. Saliha Ilican,Mujdat Caglar,Yasemin Caglar.,“Sn doping effects on the electro–optical properties of sol gel derived transparent ZnO films.”,Appl.Surface Science,Vol:256, pp.7204–7210,(2010). 7. Lee J H,Park B O.,“Transparent conducting ZnO∶Al,In and Sn thin films deposited by the sol–gel method.”,Thin Solid Films,Vol:426,pp.94–99,(2003). 8. Tsay C Y,Cheng H C,“Effect of Sn–doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method.”,Thin Solid Films,Vol:517,pp.1032–1036,(2008). 9. 任曉燕,張文慶,胡 博,“Sn對O原子在ZnO(0001)–Zn極性面上吸附影響的第一性原理研究”,甘肅聯合大學學報(自然科學版),第23卷第5期,pp.32-34,(2009). 10. 陳廣遠,林鴻儒,“散性二氧化錫粉末”,南台科技大學化學工程與材料工程研究所,(2010). 11. Saliha Ilican,Mujdat Caglar,Yasemin Caglar,“Sn doping effects on the electro–optical properties of sol gel derived transparent ZnO films”,Appl.Surface Science.,vol:256, pp.7204–7210,(2010). 12. I.Hamberg,C.G.Granqvist,K.F.Berggren,B.E.Semelius,L.Engstrom,“Band-gap widening in heavily Sn-doped In2O3”,physical Review B,vol.30,pp.3240-3249,(1984). 13. 葉志鎮,呂建國,張銀珠,何海平,"氧化鋅半導體材料摻雜技術與應用",浙江大學出版社,(2009). 14. 張躍,"一維氧化鋅納米材料",科學出版社,(2010). 15. Zi–Qiang Xu,Hong Deng,Juan Xie,Yan Li,Xiao–Tao Zu,“Ultraviolet photoconductive detector based on Al doped ZnO film sprepared by sol–gel method”,Applied SurfaceScience,Vol:253,pp.476–479,(2006). 16. Hyun Ho Shin,Yang Hee Joung,Seong Jun Kang,“Influence of the substrate temperature on the optical and electrical properties of Ga–doped ZnO thin films fabricated by pulsed laser deposition”,Mater Electron,Vol:20,pp.704–708,(2009). 17. Hafdallah A,Yanineb F,“In doped ZnO thin films. ”,J.Alloys and Compounds,Vol:509,pp.7267–7270,(2011). 18. Das A.K.,Misra P.,Kukreja L.M.,“Effect of Si doping on electrical and optical properties of ZnO thin films grown by sequential pulsed laser deposition”,Journal of physics D: APPLIED PHYSICS,Vol:42, No.16,165405,(2009). 19. Yasemin Caglar,Seval Aksoy,Saliha Ilican,Mujdat Caglar,“Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films”,Superlattices and Microstructures.,Vol:46,pp.469–475,(2009). 20. Xiurong Qu,Shuchen lu,Lina Bai,Qingguo Meng,Dechang Jia,“Electronic structure and optical properties of Sn–doped ZnO”,Physica B,vol:407,pp.268–270,(2012). 21. Changle Wua,Li Shen,Huaguang Yu,Qingli Huang,Yong Cai Zhang,“Synthesis of Sn–doped ZnO nanorods and their photocatalytic properties”,Materials Research Bulletin.,vol:46,pp.1107–1112,(2011). 22. 趙傳熙,吳 萍,張丹莉,陳榮池,淩 飛,肖 潭,“Zn2SnO4納米材料製備及光致發光特性”,物理化學學報,Vol:26,No.5, pp.1343–1348,(2010). 23. H. Abdullah,S. Selma ni,M.N. Noraz ia,P.S. MENON,S. Shaa ri, C.F. Dee,“ZnO:Sn Deposition by Sol–gel Method:Effect of Annealing on the Structural.”,Morphology and Optical Properties,Sains Malaysiana,Vol:40,pp.245–250,(2011). 24. Bixia Lin,Zhuxi Fu,Yunbo Jia,“Green luminescent center in undoped zinc oxide films deposited on silicon substrates.”,Applied Physics Letters,Vol:79,pp.943–945,(2001). 25. 裴翠錦,姚國光,馬 紅,程曉紅,“水熱法製備Zn2SnO4超細粉體”,西安郵電學院學報,第15卷第4期,pp.1-3,(2010). 26. M. Vishwas,K. Narasimha Rao,K.V. Arjuna Gowda,R.P.S. Chakradhar,“Influence of Sn doping on structural,optical and electrical properties of ZnO thin films prepared by cost effective sol–gel process”,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy。vol:95,pp.423–426, (2012). 27. 張介佳,碩士論文,“利用Sol-gel方法製作AZO透明導電膜及特性分析”,國立中興大學光電工程研究所,(2009) 28. A.D. Acharya,Shweta Moghe,Richa Panda,S.B. Shrivastava,Mohan Gangrade,T. Shripathi,D.M. Phase,V. Ganesan,“Growth and characterization of nano–structured Sn doped ZnO”,Journal of Molecular Structure.,Vol:1022,pp.8–15,(2012). 29. 諶 夏,方 亮,吳 芳,阮海波,魏文猴,黃秋柳,“透明導電ZnO:Sn薄膜光學和電學性能的研究進展”,半導體光電,第33卷第1期,pp.1-6,(2012). 30. 鄧允棣,碩士論文,“高壓處理納米ZnO / SnO2複合材料的微結構及其光譜研究”,武漢理工大學,(2008). 31. 蔡裕榮,周禮君,“以溶膠凝膠法製備透明導電氧化物薄膜的探討”,CHEMISTRY (THE CHINESE CHEM.SOC.,TAIPEI),Vol:60,No.3, pp.307–318,(2002). 32. 蘇仁福,碩士論文,“以溶膠-凝膠法製備鈦酸鉛镧薄膜做為氫離子場效電晶體感測器之研究”,國立中山大學電機工程研究所,(2002). 33. A.J. Moulson,J.M.Herbert,“Electroceramics”,1st ed., New York,pp.1 & 263.,(1990), 34. 吳坤陽,碩士論文,“溶膠凝膠法製備含銀奈米粒子之AZO透明導電膜的研究”,國立成功大學化學工程學系,(2005) 35. Caglar Y,Aksoy S.,“Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films.”,Superlattices and Microstructures,vol:46,pp.469–475,(2009)。 36. Bougrine A,Addou M.,“Effect of tin incorporation on physicochemical properties of ZnO films prepared by spray pyrolysis.”,Materials Chemistry and Physics,Vol:91, pp.247–252,(2005)。 37. Bilgin V,Kose S,“The effect of Sn concentration on some physical properties of zinc oxide films prepared by ultrasonic spray pyrolysis.”,J.of Materials Science,Vol:40,pp.1909–1915,(2005). 38. 黃樹來,馬瑾,劉曉梅,馬洪磊,孫 征,張德恒,“ZnO–SnO2 透明導電膜的低溫製備及性質”,半導體學報,Vo:25,No.1,pp.56-59,(2004). 39.J.L. Pau,L. Scheffler,M.J. Hernandez,M. Cervera,J. Piqueras,“Preparation of zinc tin oxide films by reactive magnetron sputtering of Zn on liquid Sn.”,Thin Solid Films,Vol:518, pp.6752–6755.,(2010). 40. Vipin Kumar Jain,“Study of post annealing influence on structural,chemical and electrical properties of ZTO thin films”,Journal of Alloys and Compounds,Vol:509,pp.3541–3546,(2011). 41. Chueh–Jung Huang,“Characteristics of undoped and tin–doped zinc oxide films prepared by dip–costing deposition”,HSIUPING JOURNAL,VOL.16,pp.151–162,(2008). 42. Jin–Hong Lee,Byung–Ok Park,“Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method”,Thin Solid Films.,vol:426,pp.94–99,(2003). 43. H.Abdullah,M.N.Norazia,S.Shaari,M.Z.Nuawi,N.S.Mohamed Dan,“Low–doping Effects of Nanostructure ZnO:Sn tin films annealed at different temperature in Nitrogen ambient to be applied as an Anti–reflecting coating (ARC)”,American J. of Engineering and Applied Sciences.,vol:3,pp.171–179,ISSN 1941–7020,(2010). 44. Kuan Jen Chen,Fei Yi Hung,Yen Ting Chen,Shoou Jinn Chang, Zhan Shuo Hu,“Surface Characteristics,Optical and Electrical Properties on Sol–Gel Synthesized Sn–Doped ZnO Thin Film”,Materials Transactions.,Vol.51,No.7,pp.1340–1345,(2010). 45. S.T Tan,B.J Chen,X.W. Sun,W.J. Fan,“Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition”,J.Appl.Phys.,vol.98,013505,(2005) 46. M.Gratzel,"Heterogeneous photochemical electron transfer", CRCpress, (1989) 47 .趙金安,“氧化錫和氧化鋅雙層薄膜的XPS研究”,化學研究,Vol:9,No.2,pp.60-63,(1998).
摘要: 
本論文是研究以溶膠凝膠法製作前驅物溶液,應用旋轉塗佈法分別在玻璃與矽基板上塗佈掺雜錫的氧化鋅金屬氧化物(Zn1-xSnxO)薄膜,摻雜錫濃度的莫耳比x定為0,0.01,0.03,0.05,0.07,塗佈的樣品在大氣下進行熱燒結處理,燒結溫度分別為500℃,600℃,700℃,薄膜厚度約200nm~380nm。研究目的在藉由分別控制4價錫取代2價鋅薄膜製程參數的掺雜濃度及燒結溫度,探討對薄膜的微結構、光學及電性的影響。
本論文分別使用掃瞄式電子顯微鏡、X光繞射分析儀、光激發螢光頻譜、紫外光-可見光-近紅外線光譜分析儀、霍爾量測儀等儀器,以了解製程參數變化對於薄膜的影響。由SEM觀察薄膜表面摻雜濃度x超過0.03時,表面逐漸形成尖錐狀類六角狀析出物,析出物的數量與摻雜濃度和燒結溫度的增加成正比,可推論掺雜錫可導致鋅的表面析出,這推論與SIMS的結果一致。XRD結果顯示燒結溫度隨晶粒增加而增加,但表面析出物也隨著增加,因此結晶品質會隨之下降。穿透率結果顯示,500℃燒結樣品的穿透率均可達90%,燒結溫度上升,由於島狀析出物的增加而導致樣品穿透率開始降低。500℃燒結的能隙值隨摻雜濃度x的增加而增加。相同摻雜濃度時,隨著溫度上升,能隙值則逐漸降低。在700℃燒結的樣品,能隙值隨摻雜濃度x的增加而減小。光激發螢光頻譜量測結果發現,所有燒結溫度,當錫摻雜量增加時,可見光的放射波峰由約600nm逐漸移動至510nm,表示缺陷形態由鋅間隙(Zni)變為氧空缺(Vo)。霍爾量測結果顯示在500℃熱燒結處理下,摻雜濃度x為逐漸增加至0.03時,可得到最低的電阻率(61Ω-cm),再隨著x增加而逐漸增加,這也是由於表面島狀物逐漸析出所造成。

In this thesis we employed sol-gel spin coating method to fabricate Zn1-xSnxO films on the glass and silicon substrates. Zn1-xSnxO films were prepared around 200nm~380nm with different Sn mole ratio x (0, 0.01, 0.03, 0.05, 0.07) and various sintering temperature (500 ℃, 600 ℃, 700 ℃), respectively. The purpose of the research is to declare to role of dopant concentration and sintering temperature on the microstructure, optical and electrical characteristics.

The characteristics of the films were examined by x-ray diffractogram, field-emission scanning electron microscope (FE-SEM), photoluminescence spectrophotometer, UV-VIS-NIR spectrophotometer, Hall effect system, and other related equipments. By the surface observation of FE-SEM images, hexagonal cone-shaped islands are gradually obvious as x increasing for x exceeded than 0.03. The density of hexagonal cone-shaped islands also increases with doping concentration and sintering temperature. Chemical composition analysis by SIMS shows that hexagonal cone-shaped islands are Zn-rich precipitates near the top. XRD result shows that the grain size increases with the increase of Sn doping concentration. However, the precipitate also increases on the film surface from the results of SEM images, which hints the decrease of crystallinity. The transmittance of all samples are more than 90% examined by UV-VIS-NIR spectra except x=0.07 sintered at 700℃. The absorption edge in ultraviolet region increases with the increase of Sn doping concentration sintered at 500℃. With fixed doping concentration, absorption edge of all samples decreases with the increase of sintering temperature. Contrarily, The absorption edge in ultraviolet region increases with the increase of Sn doping concentration sintered at 700℃, which may be results from the precipitates. PL spectra shows that the emission peak on visible region shift from about 600nm to 510nm, which indicates that the defect type changes from the zinc interstitials (Zni) to the oxygen vacancies (Vo) during the sintering process with the increase of Sn doping concentration. The result of Hall measurement shows that resistivity decreases, then reaches a lowest resistivity of 61 Ω-cm with the doping concentration at 0.03 sintered at 500℃, and finally increases with the increase of doping concentration, which is also related to the gradual formation of island-shaped participate on the film surface.
URI: http://hdl.handle.net/11455/2990
其他識別: U0005-0807201307263600
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.