Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2991
標題: 以溶膠凝膠法製作氧化鋅鎂薄膜特性之研究
Characterization of Zn1-xMgxO Thin Films Prepared by Sol-gel Process
作者: 謝宏旻
Hsieh, Hung-Min
關鍵字: 溶膠凝膠法;Sol-gel method;氧化鋅;旋轉塗佈法;X光繞射分析;紫外光-可見光-近紅外線光譜儀;光致螢光光譜;可變範圍躍遷;ZnO;Spin coating;X-ray diffraction;UV-VIS-NIR spectrometers;Photoluminescence spectrum;Variable range hopping
出版社: 光電工程研究所
引用: [1] S. Cho, J. Ma, Y. Kim, Y. Sun, G..K.L. Wong, and J.B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn”, Appl. Phys. Lett. 759(1999), pp. 2761-2763. [2] H. C. Park, D. Byun, B. Angadi, D. Hee Park, W. K. Choi, J. W. Choi, and Y. S. Jung, “Photoluminescence of Ga-doped ZnO film grown on c‐Al2O3 (0001) by plasma-assisted molecular beam epitaxy”, J. Appl. Phys. 102(2007), pp. 073114. [3] Y. Li, X. Dong, C. Cheng, X. Zhou, and P. zhang, “Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet”, Phys. B 404(2009), pp. 4282-4285. [4] J. Hu, and R.G.. Gordon, “Textured fluorine-doped znO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells”, Solar Cells 30(1991), pp. 437-450 [5] M. Losurdo, and M. Giangregorio, “Interaction of atomic hydrogen with Zn-polar and O-polar ZnO surfaces”, Appl. Phys. Lett. 86(2005), pp. 091901. [6] Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag et al., “Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy”, Appl. Phys. Lett. 83(2003), pp. 3290-3292. [7] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, and H. Koinuma, “MgxZn1 –xO as a II–VI widegap semiconductor alloy”, Appl. Phys. Lett. 72(1998), pp. 2466-2468. [8] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”, Acta Cryst. 32(1976), pp. 751-767. [9] M.N. Kamalasanan and Subhas Chandra, “Sol-gel synthesis of ZnO thin films”, Thin Solid Films 288(1996), pp. 112-115. [10] D. Bao, H. Gu, A. Kuang (1998), “Sol-gel derived c-axis oriented ZnO thin films”, Thin Solid Films 312(1998), pp. 37-39. [11] Y. Natsume, H. Sakata, “Zinc oxide films prepared by sol-gel spin-coating”, Thin Solid Films 372(2000), pp. 30-36. [12] K.H. Yoon and J.Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique”, Mater. Res. Bull 35(2000), pp. 39-46. [13] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. zheng, “The growth and annealing of single crystalline znO films by low-pressure MOCVD”, J. Cryst. Growth 243(2002), pp. 151-156. [14] H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh, Y. S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputterin”, J. Crystal Growth 277(2005), pp. 352-358. [15] K.B. Sundaram and A. Khan, “Characterization and Optimization of Zinc Oxide Films by RF Magnetron Sputtering”, Thin Solid Films 295(1997), pp. 87-91. [16] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda and Y. Segawa, “Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices”, Appl. Phys. Lett. 75(1999), pp. 980-982. [17] F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, and Y. S. Yu, “Blueshift of near band edge emission in Mg doped ZnO thin films and aging”, J. Appl. Phys. 95(2004), pp. 4772-4776. [18] 劉成有,“AxZn1-xO(A:Mg,Cd)薄膜材料與非線性光學性質”,博士論文(2011),東北師範大學物理化學所。 [19] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, “Recent progress in progressing and properties of ZnO”, Progress in Materials Science 50 (2005), pp. 293–340. [20] F.D. Paraguay, J. Morales, W.L. Estrada, E. Andrade and M.M. Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis”, Thin Solid Films 366(2000), pp. 16-27. [21] R. Wang, L. H. King and A.W. sleight, “Highly conducting transparent thin films based on zinc oxide”, Materials Research Society 11(1996), pp. 1659-1664. [22] 王貞雲,“以低溫水溶液法合成氧化鋅奈米線之研究”,碩士論文(2007),國立台北科技大學材料科學與工程研究所。 [23] D.G. Baik, S.M. Cho, “Application of sol-gel derived films for ZnO/n-Si junction solar cells”, Thin Solid Films 354(1999), pp. 227-231. [24] 郭瑞,“ZnMgO薄膜與ZnMgO/ZnO異質結的製備及其性能研究”,碩士論文(2010),北京化工大學材料科學與工程研究所。 [25] E. S. Kim, and R. S. Muller, “IC-processed piezoelectric microphone”, IEEE electron device lett. 8(1987), pp. 467-468. [26] C. C. Chang, and Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic device by electrochemical each techniques”, IEEE Trans. Ultrason. Ferroelectr. Freq. control. 44(1997), pp. 624-628. [27] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films:control of self-texture”, J. Crystal Growth 130(1993), pp. 269-279. [28] 劉芳佐,“以水熱法製備之氧化鋅奈米桿之氣體感測特性”,碩士論文(2009),國立台灣科技大學化學工程系。 [29] Y. M. Chiang, D. Birnie , W. D. Kingery, Physical Ceramics, John Wiley & Sons, Inc. (1997). [30] Anderson Janotti, Chris G.. Van de Walle, “New insights into the role of native point defects in ZnO”, J. Crystal Growth 287(2006), pp. 58-65. [31] 趙懿琨,“新型寬禁帶半導體MgxZn1-xO薄膜光學性質的研究”,碩士論文(2006), 山東大學。 [32] 呂婷,“溶膠-凝膠法製備Zn1-xMgxO、Zn1-xMnxO薄膜及其發光性能研究”,碩士論文(2009), 西北大學微電子學與固體電子學。 [33] 廖泓洲,“氧化鋅奈米柱的後熱處理和氧化鎂掺雜研究”,碩士論文(2005),國立交通大學材料科學與工程學系。 [34] 林益梅,葉志鎮,陳蘭蘭,朱麗萍,黃靜云,“ZnO薄膜的缺陷研究進展”,真空科學與技術學報 26(2006), pp. 385-391。 [35] F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, “Energetics of native defects in ZnO”, J. Appl. Phys. 90(2001), pp. 824-828. [36] D. C. Look, and J. W. Hemsky, “Residual Native Shallow Donor in ZnO”, Phys. Revi. Lett. 82(1999), pp. 2552-2555. [37] A. F. Kohan, G. Ceder, and D. Morgan, “First-principles study of native point defects in ZnO”, Phys. Rev. 61(2000), pp. 15019-15027. [38] S. B. Zhang, S.-H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO”, Phys. Rev. B 63(2001), pp. 075205-1~ 075205-7. [39] D. Bao, H. Gu, and A. Kuang, “Sol-gel-derived c-axix oriented ZnO thin films”, Thin Solid Films 312(1998), pp. 37-39. [40] G. Gordillo, and C. Calderon, “Properties of ZnO thin films prepared by reactive evaporation”, Solar Ener. Mate. & Solar Cells 69(2001), pp. 251-260. [41] 魏嘉瑩,“釓掺雜氧化鋅鋁透明導電膜特性分析”,碩士論文(2009),國立中央大學化學工程與材料工程研究所。 [42] P. Nunes, E. Fortunato, and R. Martins, “Influence of the post-treatment on the properties of ZnO thin films”, Thin Solid Films 383(2001), pp. 277-280. [43] V. Khranovskyy, J. Eriksson, A. Lloyd-Spetz, R. Yakimova, and L. Hultman, “Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films”, Thin Solid Films 517(2009), pp. 2073-2078. [44] 楊明輝,“透明導電膜”,藝軒圖書。 [45] 陳致宏,“利用遠距氧電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究”,碩士論文(2008), 義守大學材料科學與工程學系。 [46] Y. Sun, N. G.. Ndifor-Angwafor, D. J. Riley, and M. N.R. Ashfold, “Synthesis and Photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth”, Chem. Phys. Lett. 431(2006), pp. 352-357. [47] 陳航,“Sol-gel法掺雜ZnO薄膜的製備及光電性能研究”,碩士論文(2008), 電子科技大學材料物理與化學。 [48] Wang Qingpu, Zhang Deheng, and Xue Zhongying, “Photoluminescence of ZnO Films Deposited on Si Substrate by RF Magnetron Sputtering”, Chinese Journal of Semiconductors 24(2003), pp. 157-161. [49] Sun Xian-Kai, Lin Bi-Xia, Zhu Jun-Jie, Zhang Yang, and Fu Zhu-Xi, “Studies on the strain and its effect on defects in heteroepitaxial ZnO films prepared by LP-MOCVD method”, Acta Physica Sinica 54(2005), pp. 2899-2903. [50] X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, and C. Yang, “Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2”, Physica B 388(2007), pp. 145-152. [51] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79(1996), pp. 7983-7990. [52] J. S. Kang, H. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, “Investigation on the origin of green luminescence from laser-ablated ZnO thin film”, Thin Solid Films 443(2003), pp. 5-8. [53] Bixia Lin, Zhuxi Fu and Yunbo Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett. 79(2001), pp. 943-945. [54] P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, and H.B. Pan, “The electronic structure and spectral properties of ZnO and its defects”, Phys. Research B 199(2003), pp. 286-290. [55] W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li, and J. Xu, “Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing”, Phys. Research B 169(2000), pp. 59-63. [56] Xu Peng-shou, Sun Yu-ming, Shi Chao-shu, Xu Faqiang, and Pan Haibin, “Electronic structure of ZnO and its defect.”, J. Science in China(A) 44(2001), pp1174-1181. [57] 鄧泉,張學忠,“氧化鋅點缺陷發光機理的研究進展”,重慶科技學院學報 13(2011),pp. 117-120。 [58] 王敏吉,“以溶膠凝膠法製備氧化鎂鋅薄膜及其在薄膜電晶體主動層之應用研究”,碩士論文(2007),逢甲大學材料科學與工程學系。. [59] A. K. Shama, J. Narayan, J. F. Muth, C. W. Teng, and C. Jin et al, “Optical and structural properties of epitaxial MgxZn1–xO alloys”, Appl. Phys. Lett. 75(1999), pp. 3327-3329. [60] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, and T. Venkatesan et al, “Realization of band gap above 5.0eV in metastable cubic-phase MgxZn1 –xO alloy films”, Appl. Phys. Lett. 80(2002), pp. 1529-1531. [61] D. Zhao, Y. Liu, D. Shen, Y. Lu, and J. Zhang et al, “Photoluminescence properties of MgxZn1–xO alloy thin films fabricated by the sol-gel deposition method”, J. Appl. Phys. 90(2001), pp. 5561-5563. [62] R. Ghosh, and D. Basak, “Composition dependence of electrical and optical properties in sol-gel MgxZn1–xO thin films”, J. Appl. Phys. 101(2007), pp. 023507-1 – 023507-5. [63] 陳慧瑛,黃定加,朱泰億,“溶膠凝膠法在薄膜製備上之應用”,化工技術 7(1999), pp. 152-167。 [64] 陳麒麟,“以溶膠凝膠法製備矽酸鉿高介電材料”,碩士論文(2008),國立高雄大學應用化學系。 [65] 楊閔智,“溶膠凝膠法製作SrBi2Ta2O9鐵電薄膜研究”,碩士論文(2001),國立清華大學材料科學工程學系。 [66] 蔡育坣,“以溶膠-凝膠法與直流磁控濺鍍技術設備ZnO/Pt/ZnO多層膜之光與電特性研究”,碩士論文(2007),國立高雄應用科技大學電子工程研究所。 [67] 陳振龍,“氧化鋅薄膜備製及其二極體應用”,碩士論文(2011),崑山科技大學光電工程系。 [68] 蔡林宗,“單根氧化鋅及鎵掺雜氧化鋅奈米線之電性傳輸研究”,碩士論文(2010),國立交通大學物理研究所。 [69] Y. J. Ma, Z. Zhang, F. Zhou, L. Lu, A. Jin, and C. Gu, “Hopping conduction in single ZnO nanowire”, Nanotechnology 16(2005), pp. 746-749. [70] S. Bandyopadhyay, G..K. Paul, R. Roy, S.K. Sen, and S. Sen, “Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique”, Mater. Chem. and Phys. 74(2002), pp. 83-91. [71] K. Vanheusden, C.H. Seager, W.L.Warren, D.R. Tallant, and J.A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors”. Appl. Phys. Lett. 68(1996), pp. 403-405. [72] 吳秉勳,“以溶膠-凝膠法成長氧化鎂鋅薄膜光電特性之研究”,碩士論文(2008),國立彰化師範大學光電科技研究所。 [73] 徐國偉,“氧化鋅鎵透明導電膜之光電特性與其在氮化鎵上歐姆接觸特性之研究”,碩士論文(2006),國立成功大學光電科學與工程研究所。 [74] 楊紘先,“以濕式化學法合成氧化鋅/二氧化鈦複合奈米結構之研究”,碩士論文(2008),國立成功大學化學工程研究所。 [75] 張閔欽,“以溶膠凝膠法製作Zn1-xYxO與Zn1-xFexO透明薄膜特性之研究”,碩士論文(2009),修平技術學院電機工程研究所。 [76] Amanpal Singh, Dinesh Kumar, P.K. Khanna, Anuj Kumar, Mukesh Kumar, and Mohit Kumar, “Anomalous behavior in ZnMgO thin films deposited by sol-gel method”, Thin Solid Films 519(2011), pp. 5826-5830. [77] Wang Xiu-qin, Yuan Ning-yi, Fan Li-ning, and Li Jin-hua, “Influence of Mg2+ Doping on Structure and Optical Property of ZnO Films”, J. Jiangsu Polytechnic University 19(2007). [78] 黃昱綸,“通電作用對氧化鋅薄膜微結構之影響”,碩士論文(2010),國立台灣師範大學工業教育學系。 [79] 陳俊男,“氧化鋅鎂化合物半導體之激子特性”,碩士論文(2011),國立高雄大學應用物理學系。 [80] 張哲維,“氧化鋅螢光材料及氧化鋅奈米線之研製及其特性探討”,碩士論文(2005),國立成功大學電機工程研究所。 [81] 呂登復, 科儀新知(1984), 第六卷第三期, pp. 75。 [82] N. Benramdane, W.A. Murad, R.H. Misho, M. Ziane, Z. Kebbab, “A chemical method for the preparation of thin films of CdO and ZnO”, Materials Chemistry and Physics 48(1997), pp. 119-123. [83] T. Prasada Rao, M.C. Santhosh Kumar, S. Anbumozhi Angayarkanni, M. Ashok, “Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis”, J. Alloys and Compounds 485(2009), pp. 413-417. [84] 施敏, 半導體元件物理學。 [85] O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, and L.K. Ono et al, “Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium”, Appl. Surf. Scie. 256(2010), pp. 1895-1907. [86] 呂建國,葉志鎮,黃靖云,趙炳輝,汪雷,“退火處理對ZnO薄膜結晶性能的影響”, 半導體學報 24(2003),pp. 729-735。 [87] 劉瑩,陽生紅,張曰理,“溶膠-凝膠法製備MgxZn1-xO薄膜的結構及光學特性”, 發光學報 29(2008), pp. 718-721。 [88] 王保明,“溶膠-凝膠法製備Zn1-xMgxO薄膜及其性能研究”,碩士論文(2007), 安徽大學材料學。 [89] A.Kaushal, and Davinder Kaur, “Effect of Mg content on structural, electrical and optical properties of Zn1-xMgxO nanocomposite thin films”, Solar Ener. Mate. & Solar Cells 93(2009), pp. 193-198. [90] S. Yang, Y. Liu, Y. Zhang, and D. Mo, “Spectroscopic ellipsometry studies of Mg-doped ZnO thin films prepared by the sol-gel method”, Phys. Status Solidi A 206(2009), pp. 1488-1493. [91] B. K. Sonawane, M. P. Bhole, and D. S. Patil, “Synthesis and characterization of nanocrystalline MgxZn1-xO films deposited by spin coating method”, J. Optoelec. and Advanced Mater. 11(2009), pp. 1843-1847. [92] 胡界博,“Zn1-xMgxO薄膜的製備與表徵”,碩士論文(2005), 河南大學凝聚態物理。 [93] D. Zhao, Y. Liu, D. Shen, Y. Lu, J. Zhang, and X. Fan, “Structural and optical properties of MgxZn1-xO thin films prepared by the sol-gel method”, J. Crystal Growth 234(2002), pp. 427-430. [94] R. Ding, C. Xu, B. Gu, Z. Shi, H. Wang, L. Ba, and Z. Xiao, “Effects of Mg Incorporation on Microstructure and Optical Properties of ZnO Thin Films Prepared by Sol-gel Method”, J. Mater. Sci. Tech. 26(2010), pp. 601-604. [95] K. Bouzid, A. Djelloul, N. Bouzid, and J. Bougdira, “Electrical resistivity and photoluminescence of zinc oxide films prepared by ultrasonic spray pyrolysis”, Phys. Status Solidi A 206(2009), pp. 106-115. [96] R. Lotfi Orimi, “Investigation of the effect of annealing on the photoluminescence properties of ZnO nanoparticles, synthesized at low temperature”, Optical Materials 35(2013), pp. 657-660. [97] A. Singh, A. Vij, D. Kumar, P K Khanna, M. Kumar, S. Gautam, and K H Chae, “Investigation of phase segregation in sol-gel derived ZnMgO thin films”, Semi. Scien. and Tech. 28(2013), pp. 1-8. [98] Liang-Wen Ji, Chih-Ming Lin, Te-Hua Fang, and Tung-Te Chu et al, “Structural and optical properties of ZnO nanorods grown on MgxZn1-xO buffer layers”, Appl. Surf. Scien. 256(2010), pp 2138-2142. [99] 李金, 張昕彤, 劉益春, 郭薇, 白玉白, 李鐵津,“溶膠-凝膠法製備的MgxZn1-xO納米薄膜結構和光學性質”, 高等學校化學學報 24(2003), pp. 1830-1833。 [100] K. Yoshino, S. Oyama, and M. Yoneta, “Structural, optical and electrical characterization of undoped ZnMgO film grown by spray pyrolysis method”, J. Mater Sci. 19(2008), pp. 203-209. [101] 黃偉霞,“MgxZn1-xO透明導電薄膜的製備及性能研究”,碩士論文(2006),浙江大學材料物理與化學。 [102] K. Huang, Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, and F. Liu, “Preparation and characterization of Mg-doped ZnO thin films by sol-gel method”, Appl. Surf. Scien. 258(2012), pp. 3710-3713. [103] Rajesh Kumar , Neeraj Khare, “Temperature dependence of conduction mechanism of ZnO and Co-doped ZnO thin film”, Thin Solid Films 516(2008), pp. 1302-1307. [104] 江美菊,“相關係數面面觀”,碩士論文(2013),政治大學應用數學系。 [105] G. Paasch, T. Lindner, S. Scheinert, “Variable range hopping as possible origin of a universal relation between conductivity and mobility in disordered organic semiconductors”, Synthetic Metals 132(2002) , pp. 97–104.
摘要: 
本研究利用溶膠凝膠法(Sol-gel method)經由旋轉塗佈方式(Spin coating technique)分別在康寧玻璃基板與矽基板上製備氧化鋅(ZnO)與鎂掺雜氧化鋅(Mg-doped ZnO)的透明半導體薄膜。分別探討在不同的鎂掺雜濃度與燒結溫度下,對氧化鋅薄膜的結構和光電特性的影響。
在結構分析部分,利用X光繞射分析儀(XRD)的測量結果顯示,鎂的掺雜能部分的取代鋅離子,使晶格常數c軸長度縮短,並保有氧化鋅的六方纖鋅礦結構與c軸擇優取向的特性,沒有二次相的產生。隨著鎂掺雜濃度的增加,晶粒變小,而隨燒結溫度的增加,晶粒明顯變大,也得到了較佳的結晶品質。XRD量測所推算的晶粒尺寸和利用掃描式電子顯微鏡(FE-SEM)觀察結果一致。
在光學分析方面,利用紫外光-可見光-近紅外線光譜儀(UV-VIS-NIR spectrometers)的量測分析,當掺雜濃度增加,所製備的薄膜在紫外光吸收邊有明顯的藍位移(blue-shift),表示能隙變大。經由光致螢光光譜量測(PL),在紫外光區可觀察到一個明顯的放射峰,放射峰的波長隨掺雜濃度的增加,呈現藍位移的現象,紫外光放射峰的強度也隨著摻雜濃度的增加而變大,是由於減少了氧空缺等相關缺陷所致。
在電性量測部分,藉由量測低溫到室溫範圍(20K~RT)的電阻率隨溫度變化關係,探討鎂掺雜氧化鋅薄膜的傳導機制。接近室溫時,載子的傳導機制是熱活化能形式(activation type),在低溫時,載子的傳導機制是由可變範圍躍遷(Variable Range Hopping, VRH)所主導。

In this thesis, the Zn1-xMgxO thin films were deposited on glass and Si substrates by the sol-gel spin coating technique. The structural, optical and electrical properties of Zn1-xMgxO thin films fabricated with different Mg doping concentration and sintering temperatures have been investigated.
Examined by the X-ray diffraction measurement, the grain size and c-axis constant decrease with the increase of Mg-doped concentration. All the films exhibit c-axis preferred orientation and no other phase segregation. The Zn1-xMgxO thin films exhibit the same wurtzite hexagonal structure. This grain size reduction could be explained with the replacement of Zn by Mg. The grain size increases while the increases of sintering temperature. The observation of surface morphology from the FE-SEM images agrees with the results of XRD measurement.
The optical transparent properties of the films have been measured by the UV-VIS-NIR spectrometers. The sharp absorption edge in the ultraviolet region is blue-shifted which hints the increase of the band gap as increasing Mg doping concentration. The Photoluminescence spectra of the films show a strong ultraviolet emission and a weak visible light emission peak. The ultraviolet emission intensity is enhanced with increasing Mg doping concentration due to the decrease oxygen vacancy defects.
In order to clarify the electrical conduction mechanisms of the Zn1-xMgxO thin films, temperature-dependence resistivity are measured by four-point probe method from 20K to room temperature. At near room temperature region, the activation type dominates the transport behavior. At low temperature region, the variable range hopping (VRH) is the dominant conduction mechanism.
URI: http://hdl.handle.net/11455/2991
其他識別: U0005-0307201317232600
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.