Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2992
標題: 以軟板製作非晶氧化物薄膜電晶體及其可撓曲性研究
Fabrication of a-IGZO TFT on Plastic Substrate and Flexible Study
作者: 呂心晨
Lu, Hsin-Chen
關鍵字: 軟板;Plastic Substrate;薄膜電晶體;應變;IGZO;TFT;Strain
出版社: 光電工程研究所
引用: 73 參考文獻 [1] Displaybank, 2011. [2] J. E. Lilienfield, U.S. Patent 1,745,175, 1930. [3] J. E. Lilienfield, U.S. Patent 1,877,140, 1932. [4] J. E. Lilienfield, U.S. Patent 1,900,018, 1933. [5] P. K. Weimer, “The TFT A New Thin-Film Transistor,” Proceedings of the Institute of Radio Engineers, vol. 50, pp. 1462-1469, 1962. [6] G. F. Boesen and J. E. Jacobs, “ZnO field-effect transistor,” Proceedings of the IEEE, vol. 56, pp. 2094-2095, 1968. [7] T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," NPG Asia Mater, vol. 2, no. 1, pp.15-22, 2010. [8] M. H. Lee, K.Y. Ho, P. C. Chen, C. C. Cheng, S. T. Chang, M. Tang, M. H. Liao, and T. H. Yeh, “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display,” IEDM Digest of Technical Digest, pp. 299-302, 2006. [9] N. Munzenrieder, C. Zysset, T. Kinkeldei, and G. Troste, “Design Rules for IGZO Logic Gates on Plastic Foil Enabling Operation at Bending Radii of 3.5 mm”, IEEE, VOL. 59, NO. 8, 2012. [10] N. Munzenrieder, K. H. Cherenack, and G. Troster, “The Effects of Mechanical Bending and Illumination on the Performance of Flexible IGZO TFTs,” IEEE, VOL. 58, NO. 7, 2011. 74 [11] J. S. Park, T.W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett., 95, 013503, 2009. [12] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, E. Fortunato, “Toward High-Performance Amorphous GIZO TFTs,” J. Electrochem. Soc., 156, H161, 2009. [13] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, “Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system,” Appl. Phys. Lett., 90, 242114, 2007. [14] T. Kamiya, H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater, vol. 2, no. 1, pp.15-22, 2010. [15] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, Vol. 352, No. 9, pp. 851-858, 2006. [16] W. H. Lee, C. C. Wang, J. C. Ho, “Influence of nano-composite gate dielectrics on OTFT characteristics,” Thin Solid Films, vol. 517, no. 17, pp. 5305–5310, 2009. [17] J. Veres, S. Ogier, G. Lloyd, “Gate Insulators in Organic Field-Effect Transistors,” Chem. Mater, vol. 16, no.23, pp. 4543-4555, 2004. 75 [18] W. H. Lee, C. C. Wang, J. C. Ho, “Influence of nano-composite gate dielectrics on OTFT characteristics”, Thin Solid Films, vol. 517, no. 17, vol. 517, no. 17, vol. 517, no. 17, vol. 517, no. 17, pp. 5305–5310, 2009. [19] Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett., 74, 8, 22, 1999. [20] M. H. Lee, K. Y. Ho, P. C. Chen, C. C. Cheng, S. T. Chang, M. Tang, M. H. Liao, and T. H. Yeh, “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display,” IEDM Digest of Technical Digest, pp. 299-302, 2006. [21] H. Fujiwara, M. Kondo and A. Matsuda, “Stress-Induced Nucleation of Microcrystalline Silicon from Amorphous Phase,” J. Appl. Phys., Vol. 41, no. 5A, pp. 2821–2828, 2002. [22] J. H. Ahn, E. Y. Lee, S. H. Won, S. H. Han, S. M. Cho, J. H. Kim, “ 2 inch AMOLED with a-Si:H TFT using PVP gate insulator on plastic substrate,” SID Dig., vol. 36, pp.1542 -1545, 2005. [23] M. C. Choia, Y. Kimb, C. S. Ha, “ Polymers for flexible displays: From material selection to device applications,” Progress in Polymer Science, Vol. 33, Iss. 6, pp, 581–630, 2008. [24] I. Shiyanovskaya, A. Khan, S. Green,G. Magyar, O. Pishnyak, D. Marhefka, J. W. Doane, “Single substrate encapsulated cholesteric LCDs: coatable,drapable and foldable, ” SID Dig., Vol. 14, Iss. 2, pp. 181–186, 2006. [25] Y. R. Lin, S. C. Jeng, L. P. Hsin, J. M. Ding , C. C. Liao, Y. H. Lien, “ Electro-optical performance of bending ultra flexible film-like display , ” SID Dig., Vol. 36, pp.1565-1567, 2005.
摘要: 
摘要
近年來,非晶氧化物半導體為基礎之電子元件的研究及顯示器產品蓬勃發展。非晶氧化物半導體可於在低溫下製成,並且可以應用在軟性基板上。在軟性基板上製成有許多優點,包括輕、薄、可撓性、可大面積生產。
在本實驗中,使用非晶氧化物a-IGZO作為半導體層,並使用光能(紫外光)取代熱能,來交聯聚乙烯基苯酚(PVP)與三聚氰胺甲醛(PMF)作為絕緣層。且將TFT元件製作於軟性基板PEN。
我們將製成後的元件,施加平行/垂直於通道層的Strain,Strain分別為0、0.13、0.156、0.208、0.313 、0.625、1.248 % ,對應到彎曲半徑為∞、5、4、3、2、0.5 cm。在平行於通道層的部分,隨著Strain的增加,產生臨界電壓的漂移,到了Parallel Strain > 0.313 %,通道層開始生劣化。在垂直於通道層的部分,隨著Strain的增加,Perpendicular Strain < 0.313 %,臨界電壓尚未發變化,到了Perpendicular Strain > 0.313 % 才開始產生臨界電壓的漂移。在平行/垂直於通道層Strain=2.5 % ,漏電流才開始大量增加。
關鍵字: Plastic Substrate、IGZO、TFT、Strain

Abstract

In recent years, the research of Amorphous Oxide Semiconductor-based electronic components and the manufacturing of display products are so popular. Amorphous oxide semiconductor can be made at room temperature, and can be applied on the flexible substrate. The use of Amorphous Oxide Semiconductor for flexile substrates has many advantages such as more light, more thin, more flexible and can be large area production.
In this experiment, using Amorphous Oxide Semiconductor, a-IGZO for channel layer , and using UV instead of heat energy to cross-linked poly(4-viny phenol)(PVP) and poly(melamine-co-formaldehyde)(PMF) as insulator. And the thin film transistor (TFT) elements applied on flexible substrate PEN .
After the components was made, applying strain parallel/perpendicular direction to the channel , strain respectively at 0 , 0.13 , 0.156 , 0.208 , 0.313, 0.625 , 1.248 % , their corresponding cylinder of radius is ∞, 5,4,3,2, 0.5 cm.
In the parallel portion of the channel layer, with the increase of strain generated threshold voltage shift, when the Parallel Strain > 0.313%, the channel layer damaged. As for the perpendicular portion, when Perpendicular Strain < 0.313%, the threshold voltage not having any change, but when the perpendicular strain > 0.313%, the threshold voltage shift. The Parallel / Perpendicular Strain of the channel layer = 2.5%, a significant leakage current happened.
URI: http://hdl.handle.net/11455/2992
其他識別: U0005-2308201301024600
Appears in Collections:光電工程研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.