Please use this identifier to cite or link to this item:
標題: 可撓式a-IGZO/Pentacene薄膜電晶體互補式反相器之研究
Study on a-IGZO/Pentacene thin film transistors for flexible complementary inverter
作者: 曾柏傑
Tzeng, Bo-Jie
關鍵字: 可撓式;flexible;互補式反相器;非晶銦鎵鋅氧化物;並五苯;complementary inverter;a-IGZO;Pentacene
出版社: 光電工程研究所
引用: [1] Christopher R. Newman, C. Daniel Frisbie, Demetrio A. da Silva Filho, Jean-Luc Bredas, Paul C. Ewbank, and Kent R. Mann,“Introduction to organic thin film transistors and design of n-channel organic semiconductors,” Chemistry of materials, vol. 16, pp. 4436-4451, 2004. [2] C. D. Dimitrakopoulos, D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” IBM journal of research and development, vol. 45, pp.11-27, 2001. [3] N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE Journal on selected topics in quantum electronics, vol. 8, pp.346-361, 2002. [4] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, “High-mobility pentacene-based organic thin film transistors,” IEEE electronic device letters, vol. 18, pp. 60-61, 1997. [5] Ioannis Kymissis, C. D. Dimitrakopoulos, and Sampath Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE transactions on electrondevices, vol. 48, pp. 1060-1064, 2001. [6] Display Bank, “Trend of Flexible Display Technologies and Market Outlook (2008~2020) ,” Report. [7] P. K. Weimer, “The TFT A New Thin-Film Transistor,” Proceedings of the Institute of Radio Engineers, vol. 50, pp. 1462-1469, 1962. [8] T. P. Brody, J. A. Asars, G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Trans. Electron Devices, vol. 20, pp. 995-1001, 1973. [9] A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, A. J. Hughes, “Application of amorphous silicon field effect transistors in addressable liquid crystal display panels,” Applied Physics A: Materials Science & Processing, vol. 24, pp. 357-362, 1981. [10] Robert A. Street, “Thin-Film Transistors,” Advanced Materials, vol. 21, pp. 2007-2022, 2009. [11] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488-492, 2004. [12] J. K. Jeong, J. H. Jeong, H. W. Yang, J. -S. Park, Y. -G. Mo, H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Applied Physics Letters, vol. 91, p. 113505, 2007. [13] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. -S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Applied Physics Letters, vol. 90, p. 212114, 2007. [14] J.-S. Park, J. K. Jeong, Y. -G. Mo, H. D. Kim, S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Applied Physics Letters, vol. 90, p. 262106, 2007. [15] H. -H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C. -C. Wu, “Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states,” Applied Physics Letters, vol. 92, p. 133503, 2008. [16] H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, pp. 1516-1522, 2008. [17] T. Arai, N. Morosawa, K. Tokunaga, Y. Terai, E. Fukumoto, T. Fujimori, T. Nakayama, T. Yamaguchi, T. Sasaoka, “69.2: Highly reliable oxide-semiconductor TFT for AM-OLED display,” in Proc. SID Dig., 2010, pp. 1033-1036. [18] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, S. S. Kim, “69.3: Amorphous oxide TFT backplane for large size AMOLED TVs,” in Proc. SID Dig., 2010, pp. 1037-1040. [19] T. Kamiya, H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Materials, vol. 2, pp. 15-22, 2010. [20] R. L. Hoffman, B. J. Norris, J. F. Wager, “ZnO-based transparent thin-film transistors,” Applied Physics Letters, vol. 82, p.733, 2003. [21] D. C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, “Amorphous IZO-based transparent thin film transistors,” Thin Solid Films, vol. 516, pp. 5894-5898, 2008. [22] H. Q. Chiang, J. F. Wager, R. L. Hoff man, J. Jeong, D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,” Applied Physics Letters, vol. 86, p. 013503, 2005. [23] F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, vol. 54, pp. 3255-3259, 1983. [24] A. Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, vol. 49, p. 1210, 1986. [25] H. Koezuka, A. Tsumura, T. Ando, “Field-effect transistor with polythiophene thin film,” Synthetic Metals, vol. 18, pp. 699-704, 1987. [26] G. Horowitz, X. Peng, D. Fichou, F. Garnier, “The oligothiophene‐based field‐effect transistor: How it works and how to improve it,” Journal of Applied Physics, vol. 67, pp. 528-532,1990. [27] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Lanveld-Voss, A. J. H. Spiering, R. A. J. Jannsen, E. W. Meijer, P. Herwig, D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, vol. 401, pp. 685-688, 1999. [28] P.-Y. Lo, P.-W. Li, Z.-W. Pei, J. Hou, Y.-J. Chan, “Enhanced P3HT OTFT transport performance using double gate modulation scheme,” IEEE Electron Device Letters, vol. 30, pp. 629-631, 2009. [29] Y.-Y. Lin, D. J. Gundlach, S.F. Nelson, T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, vol. 18, pp. 606-608, 1997. [30] S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, “Temperature-independent transport in high-mobility pentacene transistors,” Applied Physics Letters, vol. 72, p. 1854, 1998. [31] S. E. Fritz, T. W. Kelley, C. Daniel Frisbie, “Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer,” Journal of Physical Chemistry B, vol. 109, p. 10574-10577, 2005. [32] W. Kalb, P. Lang, M. Mottaghi, H. Aubin, G. Horowitz, M. Wuttig, “Structure–performance relationship in pentacene/Al2O3 thin-film transistors,” Synthetic Metals, vol. 146, pp. 279-282, 2004. [33] D. Knipp, R. A. Street, A. Völkel, J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport,” Journal of Applied Physics, vol. 93, p. 347-355, 2003. [34] Toshio Kamiya, Kenji Nomura, and Hideo Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,” Journal of display technology, vol. 5, no. 7, July 2009. [35] Hideo Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, vol. 352, p. 851–858, 2006. [36] E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van Veenendaal, D. M. de Leeuw, T. M. Klapwijk, “Dopant density determination in disordered organic field-effect transistors,” Journal of Applied Physics, vol. 93, pp. 4831-4835, 2003. [37] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High-performance pentacene organic thin-film transistors,” in Dig. 54th Device Research Conf., Univ. California, Santa Barbara, pp. 80–81, June 1996. [38] S. -M. Kang , Y. Leblebici, CMOS digital integrated circuits : analysis and design. 3rd ed. Iowa : McGraw-Hill, 2003, ch. 5. [39] Neil H.E. Westa, Kamran Eshraghian, 黃淑絹, 林登彬, CMOS VLSI設計原理, 第二版, 偉明圖書有限公司, 培生教育出版集團, 2002, 第二章. [40] “Corning EAGLE XG AMLCD Glass Substrates Material Information”,Corning Incorporated MIE 301 1-3, 2006 [41] Myeon-Cheon Choi, Youngkyoo Kim,and Chang-Sik Ha, “Polymers for flexible displays: From material selection to device applications,” ScienceDirect, vol.33, pp.581-630, 2008. [42] Sigurd Wagner, Helena Gleskova, I-Chun Cheng, James C. Sturm, Z. Suo, “Chapter 14. Mechanics of TFT Technology on Flexible Substrates,” Flexible flat panel displays, Wiley, 2005. [43] M. Orita, H. Ohta, M. Hirano, S. Narushima, H. Hosono,“Amorphous transparent conductive oxide InGaO3(ZnO)m (m≦4) : a Zn 4s conductor,” Philosophical Magazine B, vol. 81, no. 5, pp.501- 515, 2001. [44] C.J. Chiu, S.P. Chang, S.J. Chang,“High-performance amorphous indium–gallium–zinc oxide thin-film transistors with polymer gate dielectric,”Thin Solid Films, vol.520, pp.5455-5458, 2012. [45] J.B. Kim, C. Fuentes-Hernandez, S.-J. Kim, S. Choi, B. Kippelen,“Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors,” Organic Electronics,vol.11,pp.1074-1078,2010. [46] J.B. Kim, C. Fuentes-Hernandez, D.K. Hwang, W.J. Potscavage Jr., H. Cheun, B. Kippelen, “Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates,” Organic Electronics,vol.12,pp.45-50,2011. [47] Kenji Nomura, Takashi Aoki, Kiyoshi Nakamura, Toshio Kamiya, Takashi Nakanishi, Takayuki Hasegawa, Mutsumi Kimura, Takeo Kawase, Masahiro Hirano, and Hideo Hosono,“Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9,9-dioctylfluorene-co-bithiophene) thin-film transistors,” Applied Physics Letters, vol. 96, pp. 263509, 2010. [48] Min Suk Oh, Wonjun Choi, Kimoon Lee, D. K. Hwang, and Seongil Im,“Flexible high gain complementary inverter using n-ZnO and p-pentacene channels on polyethersulfone substrate,” Applied Physics Letters, vol. 93, pp. 033510, 2008.
本論文中,利用交聯後之PVP:PMF薄膜作為絕緣層,吾人提出於塑膠基板(PEN)上製作包含P通道Pentacene 薄膜電晶體及N通道a-IGZO薄膜電晶體之互補式反相器。其中,P通道與N通道電晶體具有平衡的電特性,於14V下,反相器轉換電壓為供給電壓之0.5倍,其值為7.06 V,信號增益為8.4V/V。此外,吾人所製作之反相器於撓曲後,其元件為撓曲半徑4 mm,亦可得到轉換電壓為供應電壓之0.5倍,其值為7.11 V,信號增益為8.58V/V。故可知吾人所製作之互補式薄膜電晶體反相器,可適用於軟性邏輯電路之應用。

Research efforts devoted to hybrid based microelectronic and optoelectronic devices have grown significantly in recent years. The advantages of hybrid based devices are low processing temperature which is compatible with the plastic substrates, simple processing procedure that is potentially low cost, and solution process that could be produced in large area.
In this study, a Low temperature process thin film transistor was accomplished by using a cross-linked polymer. The Crosslinks which made by Polyvinylphenol (PVP) and Poly(melamine-co-formaldehyde)(PMF) by using UV light to control the crosslinking reaction as the gate dielectric. By utilizing this polymer as gate dielectric, pentacene based organic thin-film transistor could be operated at 30V and a-IGZO based amorphous oxide thin-film transistor could be operated at 10V. Furthermore, the coating and cross-linking process of ultrathin PVP ensure that this technique is potentially compatible with the large area printing methods such as inkjet printing and doctor blade coating. The cross-linked polymer dielectric is therefore a good candidate for OTFT in large area printed flexible electronic applications.
We demonstrated an organic/inorganic complementary inverter composed of p channel Pentacene and n channel a-IGZO thin film transistors on plastic substrate(PEN) by utilizing the cross-linked PVP and PMF as dielectrics. This two types of transistors exhibit balanced performance. The inverter has good performance with switching voltage around half of supply voltage which is 7.06V and signal gain of 8.4 V/V at 14V and its components under the bending radius of 4mm. Also we characterize the inverter after bending , the inverter has switching voltage around half of supply voltage which is 7.11V and signal gain of 8.58 V/V , that indicates it is suitable for flexible logic application.
其他識別: U0005-0608201217103100
Appears in Collections:光電工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.