Please use this identifier to cite or link to this item:
標題: 奈米粒子複合介電層與可撓式a-IGZO薄膜電晶體之研究
Nanocomposite Dielectric for Flexible a-IGZO Thin Film Transistors
作者: 簡俊睿
Jian, Jyun-Ruei
關鍵字: 奈米粒子;Nanoparticle;IGZO;複合式介電層;薄膜電晶體;IGZO;Nanocomposite dielectric;Thin-film transistors
出版社: 光電工程研究所
引用: [1] 趙祖佑, “電子工程專輯”,工研院IEK,六月,2007. [2] J.K. Yoon, Y.H. Jang, B.K. Kim, H.S. Choi, B.C. Ahn, and C. Lee, “Voltage dependence of off current in a-Si:H TFT under backlight illumination” J. Non-Cryst.Solids ,vol.164-166, pp.747 ,1993. [3] Lee JW, “Electron devices meeting”, IEMD 98 Technical Digest, International, 1998. [4] C.D. Dimitracopoulos D.J. Mascaro “Organic thin-film transistors: A review of recent advances” vol. 45 no. 1 January 2001. [5] G. F. Boesen, J. E. Jacobs“ZnO Field-Effect Transistor”, Proc. IEEE Lett,2094, 1968. [6] R. L. Hoff man, B. J. Norris, J. F. Wager, “ZnO-based transparent thin-film transistors”Appl. Phys. Lett. 82, pp.733, 2003. [7] K. Nomura et al., Science 300, pp. 1269, 2003. [8] Zhenan Bao et al., “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers” Nature Materials, Vol 9, October 2010. [9] J. A. Voorthuyzen , P. Bergveld, A. J. Sprenkels, “Semiconductor-based electret sensors for sound and pressure”, IEEE Trans. Electr. Insul. 24, pp.267~276, 1989. [10] Olthuis, W. “Chemical and physical FET-based sensors or variations on an equation”. Sens. Actuat. B, vol.105, pp.96-103, 2005. [11] Someya, T. et al. “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes” Proc. Natl Acad. Sci, vol. 102, pp.12321-12325, 2005. [12] Someya, T. et al. “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications”. Proc. Natl Acad. Sci, vol.101, pp.9966-9970, 2004. [13] Hussain, M., Choa, Y-H. & Niihara, K. “Conductive rubber materials for pressure sensors”, J. Mater. Sci. Lett. 20, pp.525-527, 2001. [14] Shimojo, M., Namiki, A., Ishikawa, M., Makino, R. & Mabuchi, K. “A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method”. IEEE Sensors J. Issue 4, pp.589-596, 2004. [15] Engel, J., Chen, J., Chen, N., Pandya, S., Liu, C. 19th International Conference on MEMS, Istanbul, Turkey, IEEE, 2006. [16] Lee, H-K., Chang, S-I. , Yoon, E. “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment”. J. Microelectromech. Syst.15, pp.1681-1686, 2006. [17] I.Lee, H. J. Sung, “Development of an array of pressure sensors with PVDF film”. Exp. Fluids 26, pp.27-35, 1999. [18] Shirinov, A. V., Schomburg, W. K. “Pressure sensor from a PVDF film”. Sens. Actuat. A 142, pp.48-55, 2008. [19] Hideo Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application”, Journal of Non-Crystalline Solids 352 , pp. 851~858,Jun ,2006. [20] Toshio Kamiya, Hideo Hosono “Material characteristics and applications of transparent amorphous oxide semiconductors”,NPG Asia Mater. 2(1) pp.15~22, 2010. [21] Hideo Hosono, Masahiro Yasuk et al. “Novel oxide amorphous semiconductors: transparent conductingamorphous oxides”, Ournal of Non-Crystalline So Lids 203, pp.334~344, 1996. [22] Kenji Nomura, Hiromichi Ohta et al. “Room-temperature fabricationof transparent flexible thin-filmtransistors using amorphousoxide semiconductors ”Nature ,Vol 432 ,pp.25 ,November 2004 [23] Jae Kyeong Jeong, Hui Won Yang, Jong Han Jeong, Yeon-Gon Mo,Hye Dong Kim. “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors” Appl. Phys. Lett., vol.93, pp.123508, 2008. [24] Janos Veres, Simon Ogier, Giles Lloyd. “Gate Insulators in Organic Field-Effect Transistors” Chem. Mater, vol.16, pp. 4543-4555, 2004. [25] Wen-Hsi Lee, Chun Chieh Wang, Jia Chung Ho. “Influence of nano-composite gate dielectrics on OTFT characteristics”, Thin Solid Films, vol.517, pp.5305–5310, 2009. [26] Hagen Klauk, Marcus Halik, Ute Zschieschang, Gunter Schmid, Wolfgang Radlik. “High-mobility polymer gate dielectric pentacene thin film transistors”, Jourmal of Applied Physics, Volume 92, Number 9, November, 2002. [27] Joo Hyon Noh, Chang Su Kim, Seung Yoon Ryu, Sung Jin Jo. “Low-Voltage-Driven Bottom-Gate Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistors with High Dielectric Constant Oxide/Polymer Double-Layer Dielectric”, Jpn. J. Appl. Phys. Vol.46 , pp. 4096-4098, 2007. [28] F.C. Chen, C.S Chuang et al. “Low-voltage organic thin-film transistors with polymeric nanocomposite dielectrics”, Organic Electronics Vol 7, pp.435~439 , 2006. [29] S. Lee, B. Koo, J. Shin, E. Lee, H. Park and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance” , Appl. Phys. Lett.,vol. 88, no. 16,pp. 162109, 2006. [30] J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D.Kim, “ High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel” Appl. Phys. Lett., vol.91, pp113505, 2007 [31] Myeon-Cheon Choi, Youngkyoo Kim, Chang-Sik Ha, “Polymers for flexible displays: From material selection to device applications”, Prog. Polymor. Sci. vol.33, pp.581–630, 2008.
在本實驗中,吾人利用有機高分子聚合物(PVP)與無機氧化鋁之奈米粒子(<50nm),形成一種奈米粒子複合介電層來當作a-IGZO薄膜電晶體之絕緣層。第一先使用MIM結構去測試閘極介電層之最佳化參數,之後將最佳化參數之閘極介電層分別應用在玻璃基板與塑膠基板(PEN)上,並分別展現出不錯的特性,除此之外,也發現加了氧化鋁後的閘極介電層具有使元件始終維持在增強型(enhancement mode)元件,還會使奈米粒子複合式閘極介電層之薄膜電晶體再經由100次撓曲後還具有不錯之特性。在加入氧化鋁前,其載子遷移率為0.48 cm2/V-s,臨界電壓為0.3V,電流開關比為104與次臨界擺幅為0.98V/dec,而在加入氧化鋁後,其載子遷移率可提升至5.01 cm2/V-s,臨界電壓為1.9V,電流開關比為106與次臨界擺幅為1.2V/dec。

In this thesis, we study a nanocomposite dielectric for flexible a-IGZO Thin Film Transistors, it combines both organic polymer PVP and inorganic nanoparticle aluminum oxide to perform the gate dielectric.The uniqe advantage of the gate dielectric is that simple and solution process, first we find the optimization parameter of gate dielectric which used as a MIM structure, and we spin coated the gate dielectric in the glass and PEN substrate.In combination of both organic and inorganic gate dielectric electrical characterization was well and good, and we found two major advantages one is thate always in the enhancement mode, and the other one is robust when it is bending more than one hundred times.The TFT performance was without adding Al2O3 was exhibit 0.48 cm2/V-s of mobility, 0.3 V of threshold voltage, 104 of on off ratio and 0.98V/dec of subthreshold swing, and after adding the Al2O3 the TFT was improved to 5.01 cm2/V-s of mobility, 1.9 V of threshold voltage, 106 of on off ratio and 1.2V/dec of subthreshold swing.
其他識別: U0005-2407201217172600
Appears in Collections:光電工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.