Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLiu, Min-Chuen_US
dc.identifier.citation[1] S. Forrest, P. Burrows, M. Thompson, IEEE Spectrum 37 (2000) 29. [2] Z.Y. Xie, L.S. Hung, F.R. Zhu, Chem. Phys. Lett. 381 (2003) 691. [3] A.N. Krasnov, Appl. Phys. Lett. 80 (2002) 3853. [4] A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, H. Minoura, A.K. Sarkar, A. Akiba, A. Kamiya, T. Endo, Thin Solid Films 496 (2006) 112. [5] K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada, S. Niki, Japanese Journal of Applied Physics, 43 L180–L182 (2004). [6] Ting-Jen Hsueh,Cheng-Liang Hsu,Shoou-Jinn Chang,I-Cherng Chen,ʻʻLatearly grown Zno nanowire ethanol gas sensorsʼʼ , Sensors and Actuators B 126 (2007) pp. 473-477 [7] C. J. Kim, D. Kang, I. Song, J. C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J. C. Lee, Y. Park, Electron Devices Meeting, IEDM ‘06. International (2006). [8] C. Becker, E. Conrad, P. Dogan, F. Fenske , B. Gorka, T. Ha‥nel, K. Y. Lee, B. Rau , F. Ruske, T. Weber, M. Berginski, J. Hupkes, S. Gall, B. Rech, Solar Energy Materials & Solar Cells, 93 855–858 (2009). [9] J.Hu and R.G.Gordon, J.Appl.Phys, 71(2) 880-890 (1992) [10] H.U.Habermeier, Thin Solid Films, 80157-160 (1981) [11] C. Eberspacher, A.L. Fahrenbruch and R.H. Bube,Thin Solid Films, 136 1-10 (1986) [12] F.Furusaki, J. Takahashi and K.Kodaira, J. of the Ceramic Society of Japan, 102 [2] 200-205 (1994) [13] Z.C.Jin, I.Hamberg and C.G.Grangvist., J.Appl.Phys. ,64 5117-5131 ( 1988 ) [14] T.Minami, H.Satoo,T.Sonoda,H.Nanto and S. Takata, Thin Solid Films, 171 307-311 (1989) [15] Y. Hoshi, T. Kiyomura, Thin Solid Films, 411 36–41 (2002). [16] E. Fortunato, A. Goncalves, V. Assuncao, A. Marques, H. Aguas, L. Pereira, I.Ferreira, R. Martins, Thin Solid Films 442 (2003) 121–126. [17] Byeong-Guk Kim, Jeong-Yeon Kim, Seok-Jin Lee, Jae-Hwan Park, Dong-Gun Lim, Mun-Gi Park. Applied Surface Science 257 (2010) 1063–1067 [18] Byung Du Ahn, Young Gun Ko, Sang Hoon Oh, Jean-Ho Song, Hyun Jae Kim. Thin Solid Films 517 (2009) 6414–6417 [19] K. Ellmer, Journal of Physics D: Applied Physics, 34 3097-3108 (2001). [20] B.E. Sernelius, K.-F. Berggren, Z.-C. Jim, I Hamberg, C.G. Granqvist, “Band-gap tailoring of Zno by means of hravy Al doping”, Physical review B, Volume 37, Number 17. [21] Boen Houng, Han Bin Chen, “Investigation of A1F3 doped ZnO thin films prepared by RF magnetron sputtering”, Ceramics International 38 (2012) 801 – 809. [22] Hyeongsik Park, Kyungsoo Jang, Krishna Kumar, Shihyun Ahn, Jaehyun Cho, Juyeon Jang, Kyungjun Ahn, Jeonghoon Yeom, Dongseok Kim, Junsin Yi, “Electrical mechanism analysis of Al2O3 doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering”, Thin Solid Films 519 (2011) 6910–6915. [23] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, H. Ma, Thin Solid Films, 483 296– 300 (2005). [24] X. Yu, J. Ma,, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, Journal of Crystal Growth, 274 474–479 (2005). [25] K. Tominaga, N. Umezu, I Mori, T. Ushiro, T. Moriga, I. Nakabayashi, Thin Solid Films, 334 35-39 (1998). [26] Stephen A. Campbell, “The Science and Engineering of Microelectronic Fabrication” , 2nd edition, Oxford University Press (2001). [27] Brian Chapman, “Glow Discharge Processes”, John Wiley & Sons, (1980). [28] E. V. Lavrov, J. Weber, F. Börrnert, Chris G. Van de Walle, R. Helbig, Physical Review B, 66 165205-1~7 (2002). [29] Stephen A. Campbell,“The Science and Engineering of Microelectronic Fabrication” , 2nd edition, Oxford University Press (2001). [30] S. M. Sze, “Semiconductor Devices: Physics and Technology”, 2nd edition , John Wiley & Sons, Inc., 55-56 (2002). [31] Z.L. Pei, X.B. Zhang, G.P. Zhang, J. Gong, C. Sun, R.F. Huang, L.S.Wen, Thin Solid Films 497 (2006) 20. [32] Donald A. Neamen, “An introduction to semiconductor devices”, 2007.1 [33] S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra, Appl. Phys. Lett. 40 (1986) 394. [34] S.S.Lin,J.L.Huang,P. ˇSajgalik, Surf.Coat.Technol.190(2005)40. [35] Kin-Weng Wang Microstructure & Characteristics of Titanium or Cobalt-doped Zinc Oxide Thin Films [36] 藍銀鋒,Indium Tin Oxide Deposition at Ambient Temperature on Flexible Polymer Substrate [37] Yu Zhi-nong, Xia fan, Li Yu-qiong, Xue Wei The electrical stabilities of flexible ITO thin films on buffer layer coated PET [38] B.-J. Woo, J.-S. Hong, S.-T. Kim, H.-M. Kim, S.-H. Park and J.-J. Kim Effect of a SiO2 Buffer Layer on the Characteristics of In2O3-ZnO-SnO2 Films Deposited on PET Substrates Journal of the Korean Physical Society, Vol. 48, No. 6, June 2006en_US
dc.description.abstract本研究是利用射頻磁控濺鍍製備氧化鋅摻鎵(ZnO:Ga, GZO)薄膜於聚亞醯胺(Polyimide,PI)基板、聚對苯二甲二乙酯(polyethylene terephthalate,PET)基板與玻璃基板上,探討不同基板與SiNx緩衝層對GZO薄膜特性的影響。 對GZO薄膜的結晶觀察用XRD測量,折射率和消光係數測定採用橢圓偏光譜儀,光穿透率使用UV-VIS和電性量測使用霍爾效應測量,薄膜表面形貌分析使用AFM與SEM,薄膜成分分析使用XPS 分析。 以射頻功率50 W、基板溫度室溫到200℃、工作壓力5 mTorr、厚度為150 nm。所有薄膜都有(002)優選方向,且在200℃玻璃基板上的GZO薄膜有最佳的電性,電阻率為4.964×10-4 Ω-cm。PI及PET基板表面能量較低,使的薄膜附著力不佳,薄膜結晶性較差,並由XPS分析發現,OII峰面積比例較低, OI與OIII 峰比例面積增加,使的氧空缺減少,化學表面吸附氧上升。 薄膜太陽能電池元件部分,以射頻功率50 W、基板溫度200℃、工作壓力5 mTorr、厚度為1000 nm,有最佳的效益指數(Figure of merit, FOM),於玻璃與PI塑膠基板上沉積,玻璃基板上GZO薄膜電阻率為5.77×10-4 Ω-cm,可見光區的平均穿透率可達到約92.5%,而PI塑膠基板上加入SiNx緩衝層沉積,電阻率為6.25×10-4 Ω-cm,可見光區的平均穿透率則可達到約93.38%。 使用濃度0.5%的稀釋鹽酸蝕刻GZO薄膜,玻璃上GZO薄膜的霧度(Haze ratio)為8.98%,PI上薄膜的霧度(Haze ratio)為18.93%,有緩衝層PI的霧度(Haze ratio)為37.24%。太陽能電池部分,在GZO薄膜上成長p-i-n結構以及鋁電擊製作非晶矽薄膜太陽能電池元件,以玻璃上並經過濃度0.5%稀釋鹽酸蝕刻之元件效率最佳,轉換效率η為4.921%,PI的部分則是加入SiNx緩衝層,平均轉換效率η從4.648%增加到4.785%。zh_TW
dc.description.abstractIn this study, Gallium-doped zinc oxide (GZO) thin films were deposited on Polyimide、polyethylene terephthalate and glass substrate by RF magnetron sputtering. We investigated the effects of deposition parameters such as different substrate and SiNx buffer layer on properties of GZO thin films. The crystallinity of GZO films was observed by X-Ray diffraction (XRD) measurements. Refractive index and extinction coefficient were measured by using a spectroscopic ellipsometer. Optical transmittance of the films was measured by using a UV–VIS spectrophotometer. The electrical properties of GZO films were determined by a Hall effect measurement. The surface roughness was measured by scanning electron microscope (SEM) and atomic force microscope (AFM). Thin film composition analysis use XPS. The Process parameters is RF power of 50 W, the substrate temperature from room temperature to 200 °C, working pressure of 5 mTorr and the thickness of 150 nm. All GZO films exhibited hexagonal wurtzite crystal structure with a (002) preferential orientation along the c-axis perpendicular to the substrate. And the prepared films achieved the optimal figure of merit of resistivity of 4.964×10-4 Ω-cm at substrate temperature of 200 °C on glass substrate. The surface energy of polyimide and polyethylene terephthalate are the lower, result the adhesive force between the GZO films and the substrate are lower, and Poor crystalline. By XPS analysis detection, the OIII peak area ratio is lower ,OI and OIII peaks area ratio addition cause the decrease in oxygen vacancies decrease and surface oxygen adsorbed rise. Finally, amorphous silicon (α-Si) thin film solar cells were fabricated using the developed GZO films as the front electrodes to study the effects of 0.5% diluted hydrochloric acid (HCl) etching . The prepared films achieved the optimal figure of resistivity of 5.77×10-4 Ω-cm and average transmittance of 92.5% in the wavelength range of 400-700 nm at the RF power of 50 W, the substrate temperature of 200 °C, the working pressure of 5 mTorr and the thickness of 1000 nm on glass substrate. And SiNx have been chosen as a buffer layer between the GZO and PI substrate to improve the GZO , resistivity of 6.25×10-4 Ω-cm and average transmittance of 93.38%. For diluted HCl-etched films on PI, the average haze ratio of 18.93% was obtained when the HCl concentration was 0.5%. And insert SiNx butween GZO and PI have the highest average haze ratio 37.24 . The efficiency of the fabricated p-i-n α-Si thin film solar cell using the 0.5%-HCl-etched GZO film as the front electrode increased form 4.648% to 4.785% as compared to that using the as-deposited film.en_US
dc.description.tableofcontents目錄 誌謝 I 中文摘要 II ABSTRACT IV 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 理論基礎與文獻回顧 3 2.1 薄膜特性 3 2.1.1 氧化鋅(ZnO)薄膜 3 2.1.2 摻雜現象 4 2.1.3 氧化鋅摻鎵(ZnO:Ga, GZO)薄膜 5 2.2 電漿原理 6 2.3 濺鍍系統 7 2.3.1 濺鍍原理 7 2.3.2 射頻磁控濺鍍系統 8 2.4 薄膜成長機制 8 第三章 研究方法及步驟 12 3.1 實驗與分析流程 12 3.1.1 靶材製作 13 3.1.2 基板處理 14 3.1.3 稀釋鹽酸(HCl)蝕刻處理 16 3.1.4 元件製作 17 3.2 薄膜分析儀器介紹 18 3.2.1 厚度分析儀器 18 3.2.2 結構分析儀器 18 3.2.3 光學分析儀器 19 3.2.4 電性分析儀器 20 第四章 結果與討論 22 4.1 不同基板對GZO薄膜的影響 22 4.1.1 沉積速率 22 4.1.2 XRD結構分析 23 4.1.3 SEM表面形貌 26 4.1.4 薄膜AFM分析 27 4.1.5 電性分析 28 4.1.6 光學特性 29 4.1.7 XPS 分析 33 4.2 SINX緩衝層的選擇 40 4.2.1 SiNx的折射率(n) 41 4.2.2 SiNx的消光係數(k) 43 4.2.3 SiNx的I-V曲線 43 4.2.4 基板表面接觸角 45 4.3 SINX對GZO薄膜的影響 45 4.3.1 沉積速率 45 4.3.2 XRD結構分析 46 4.3.3 SEM表面形貌 50 4.3.4 薄膜AFM分析 52 4.3.5 電性分析 54 4.3.6 光學特性 56 4.3.7 XPS 分析 59 4.4 太陽能電池元件 64 4.4.1 XRD結構分析 64 4.4.2 鹽酸蝕刻速率 66 4.4.3 SEM表面形貌 66 4.4.4 光學特性 69 4.4.5 太陽能電池元件 71 第五章 結論 75 參考文獻 77zh_TW
dc.subjectSolars cellen_US
dc.titleStudy of properties of ZnO:Ga thin films prepared by RF magnetron sputtering on different substrates for amorphous silicon thin film solar cellsen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:光電工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.