Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3005
標題: 應用於薄膜太陽電池之透明導電氧化鋅摻鋁氟之薄膜製備及特性研究
Fabrication and characterization of transparent conducting ZnO:Al,F thin film for thin-film solar cell applications
作者: 張僑儒
Chang, Chiao-Lu
關鍵字: 氧化鋅;ZnO;電漿處理;太陽能電池;plasma;solar cell
出版社: 光電工程研究所
引用: [1] J.Hu and R.G.Gordon, “Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition”, J.Appl.Phys, 71[2] (1992) 880-890. [2] H.U.Habermeier, “Properties of indium tin oxide thin films prepared by reactive evaporation”, Thin Solid Films, 80(1981)157-160. [3] C. Eberspacher, A.L. Fahrenbruch and R.H. Bube, “Properties of ZnO films deposited onto InP by spray pyrolysis”, Thin Solid Films, 136(1986) 1-10. [4] F.Furusaki, J. Takahashi and K.Kodaira, “Preparation of ITO Thin Films by Sol-Gel Method”, J. of the Ceramic Society of Japan, 102 [2] (1994) 200-205. [5] 曲喜新、楊邦朝、姜節儉、張懷武編著,“電子薄膜材料”,北京科學出版社, 93 (1996). [6] S. A. Campbell, “The Science and Engineering of Microelectronic Fabrication”, 2nd edition, Oxford University Press, 2001S. A. Campbell. [7] Ken Nakahara, Kentaro Tamura, Mitsuhiko Sakai, Daisuke Nakagawa, Norikazu Ito, Masayuki Sonobe, Hidemi Takasu, Hitoshi Tampo, Paul Fons, Koji Matsubara, Kakuya Iwata, Akimasa Yamada and Shigeru Niki, “Improved External Efficiency InGaN-Based Light-Emitting Diodes with Transparent Conductive Ga-Doped ZnO as p-Electrodes”, Japanese Journal of Applied Physics Vol. 43, No. 2A, 2004, pp. L 180–L182. [8] Chang Jung Kim, Donghun Kang, Ihun Song, Jae Chul Park, Hyuck Lim, Sunil Kim, Eunha Lee, Ranju Chung, Jae Cheol Lee and Youngsoo Park, “Highly Stable Ga2O3-In2O3-ZnO TFT for Active-Matrix Organic Light-Emitting Diode Display Application”, International Electron Devices Meeting, 2006. IEDM ''06. [9] X. Jiang, F.L. Wong, M.K. Fung, and S.T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”,Appl. Phys. Lett. 83(2003) 1875-1877. [10] Jianhua Hu, Roy G. Gordon, “Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells”, Sol. Cells 30 (1991) 437-450. [11] C. Becker, E.Conrad , P.Dogan , F.Fenske , B.Gorka , T.Ha‥nel , K.Y.Lee , B.Rau , F.Ruske , T.Weber , M.Berginski , J.Hupkes , S.Gall , B.Rech, “Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells”, Solar Energy Materials & Solar Cells 93 (2009) pp. 855–858. [12] Jingbiao Cui, “Zinc oxide nanowires”, Materials Characterization6 4 ( 2 0 1 2 ) 43-52. [13] K. Ellmer, Journal of Physics D: Applied Physics, 34 (2001) 3097-3108. [14] J.B. Lee, H.J. Lee, S.H. Seo, J.S. Park, “Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications”,Thin Solid Films 398-399 (2001) 641-646. [15] Y.C. Lin, C.R. Hong, H.A. Chuang, “Fabrication and analysis of ZnO thin film bulk acoustic resonators”, Appl. Surf. Sci. 254 (2008) 3780-3786. [16] J. Clatot, G.Campet, A.Zeinert, C.Labrugere, A.Rougier, “Room temperature transparent conducting oxides based on zinc oxide thin films” Applied Surface Science 257 (2011) 5181–5184. [17] Shou-Yi Kuo, Kou-Chen Liu, Fang-I Lai, Jui-Fu Yang, Wei-Chun Chen, Ming-Yang Hsieh, Hsin-I Lin, Woei-Tyng Lin, “Effects of RF power on the structural, optical and electrical properties of Al-doped zinc oxide films”, Microelectronics Reliability 50 (2010) 730–733. [18] Yu-Zen Tsai, Na-Fu Wang, Chun-Lung Tsai, “Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering”, Thin Solid Films 518 (2010) 4955–4959. [19] B.G. Choi, I.H. Kim, D.H Kim, K.S. Lee, T.S. Lee, B. Cheong, Y.J. Baik,W.M. Kim, “Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter”, Journal of the European Ceramic Society 25 (2005) 2161–2165. [20] P.P. Sahay, R.K. Nath, “Al-dopend ZnO thin films as methanol sensors”, Sensors and Actuators B 134(2008) pp.654-659. [21] S.J. Pearton, D.P. Norton, K. Ip,Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Prog. Mater. Sci. 50 (2005) 293-340. [22] B.E. Sernelius, K.-F. Berggren, Z.-C. Jim, I Hamberg, C.G. Granqvist, “Band-gap tailoring of Zno by means of hravy Al doping”, Physical review B, Volume 37, Number 17. [23] Boen Houng, Han Bin Chen, “Investigation of A1F3 doped ZnO thin films prepared by RF magnetron sputtering”, Ceramics International 38 (2012) 801 – 809. [24] Hyeongsik Park, Kyungsoo Jang, Krishna Kumar, Shihyun Ahn, Jaehyun Cho, Juyeon Jang, Kyungjun Ahn, Jeonghoon Yeom, Dongseok Kim, Junsin Yi, “Electrical mechanism analysis of Al2O3 doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering”, Thin Solid Films 519 (2011) 6910–6915. [25] Stephen A. Campbell, “The Science and Engineering of Microelectronic Fabrication”, 2nd edition, Oxford University Press, (2001). [26] 姜辛, 孙超, 洪瑞江, 戴达煌, “透明导电氧化物薄膜”, 高等教育出版社, 2008年. [27] Klaus Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties”, J. Phys. D: Appl. Phys. 33 (2000) R17–R32. [28] 莊達人, “VLSI製造技術”,高立圖書有限公司,民國96年10月7日六版二刷. [29] John A. Thornton, J. Vac. Sci. Technol., 11-4(1974) 666-670. [30] 伍秀菁,汪若文,林美吟, “真空技術與應用”,行政院國家科學委員會精密儀器發展中心, 民國90年. [31] S.M. Sze, “Semiconductor Devices:Physics and Technology”, 2nd edition, John Wiley & Sons, Inc., (2002). [32] B.D. Cullity and S.R. Stock, “Elements of XRD”, Prentice Hall,Chap. 5-2 (2001) 167-171. [33] Jyh-Ming Ting, B.S. Tsai, “DC reactive sputter deposition of ZnO:Al thin film on glass”, Materials Chemistry and Physics 72 (2001) 273–277. [34] 陈建林,陈 鼎,张世英,陈振华,“铝掺杂对ZnO׃Al薄膜结晶性能与微观组织的影响”, The Chinese Journal of Nonferrous Metals, 1004-0609 (2009) 07-1284-05. [35] Boen Houng , Han Bin Chen, “Investigation of AlF3 doped ZnO thin films prepared by RF magnetron sputtering”, Ceramics International 38 (2012) 801–809. [36] B.G. Choi, I.H. Kim, D.H Kim, K.S. Lee, T.S. Lee, B. Cheong, Y.-J. Baik ,W.M. Kim, “Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter”, Journal of the European Ceramic Society 25 (2005) 2161–2165. [37] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy”, printed in the United States of America, 1979, pp.50–51. [38] Byeong-Yun Oh, Min-Chang Jeong, Jae-Min Myoung , “Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films”, Applied Surface Science 253 (2007) 7157–7161. [39] Wei-Lun Lu, Kuo-Chan Huang, Chih-Hung Yeh, Chen-I Hung, Mau-Phon Houng, “Investigation of textured Al-doped ZnO thin films using chemical wet-etching methods”, Materials Chemistry and Physics 127 (2011) 358–363. [40] R. Das, T. Jana and S. Ray, “Degradation studies of transparent conducting oxide: a substrate for microcrystalline silicon thin film solar cells”, Sol. Energy Mater. Sol. Cells 86 (2005),207–216. [41] Naoki Ohashi, Yu-Guang Wang, Takamasa Ishigaki, Yoshiki Wada, Hiroyuki Taguchi, Isao Sakaguchi, Takeshi Ohgaki, Yutaka Adachi, Hajime Haneda, “Lowered stimulated emission threshold of zinc oxide by hydrogen doping with pulsed argon–hydrogen plasma”, Journal of Crystal Growth 306 (2007) 316–320. [42] Mujdat Caglar, Saliha Ilican, Yasemin Caglar, “Influence of dopant concentration on the optical properties of ZnO: In films by sol–gel method”, Thin Solid Films 517 (2009) 5023–5028. [43] Prof. Dr. Hadis Morkoc, Umit Ozgur, “Zinc Oxide: Fundamentals, Materials and Device Technology”, published Online: 25 SEP 2009 [44] G. Haacke, “New figure of merit for transparent conductors”, Journal of Applied Physics, Vol. 47, No.9, September 1976 [45] H.P. Chang, F.H. Wang, J.Y. Wu, C.Y. Kung, H.W. Liu, “Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment”, Thin Solid Films 518 (2010) 7445–7449. [46] M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films”, Applied Surface Science 158 _2000. 134–140. [47] Jaehyung Lee, DonggunLim, KeajoonYang, WonseokChoi, “Influence of different plasma treatments on electrical and optical properties on sputtered AZO and ITO films”, Journal of Crystal Growth 326 (2011) 50–57. [48] Donald A. Neamen, “An introduction to semiconductor devices”, 出版日期2007年1月。
摘要: 
本研究是利用射頻磁控濺鍍系統成長氧化鋅摻鋁、氟薄膜於EagleXG玻璃上,使用四種含不同Al2O3比例(0 wt%、1 wt%、2 wt%及4 wt%)的氧化鋅靶材,其中ZnF2含量固定為1.5 wt%,將四種靶材分別命名為FZO、A1FZO、A2FZO與A4FZO,並探討其電性、表面型態、微結構以及光學特性。
第一部份,利用氬氣做為濺鍍背景氣體,固定電漿功率80 W、背景壓力5×10-6 Torr、工作壓力5×10-3 Torr、薄膜厚度350 nm,在不同的基板溫度( RT、100°C、200°C )沉積薄膜。無論鋁含量的多寡所有薄膜在200 °C環境下成長會有最佳的電阻率,並且可見光穿透率的範圍皆為91 %以上,其中又以A1FZO有最佳的電阻率為2.877×10-4 Ω-cm。
第二部份,使用電漿輔助化學氣相沈積(PECVD)對以上試片進行氫氬電漿後處理,後處理條件為通入氫氣和氬氣(1:1),固定基板溫度200°C,處理時間1小時。室溫沉積之A1FZO薄膜經電漿處理後,電阻率由5.479×10-4下降至4.247×10-4 Ω-cm。電性改善的原因為氫原子可鈍化其晶界及表面缺陷;並使吸附氧脫離,增加薄膜內氧空缺;同時氫會在薄膜中形成淺層施體,提供自由電子使薄膜導電性提高。
第三部份,將AFZO薄膜厚度成長至約1000 nm,再使用 0.2 % HCl蝕刻至厚度約800 nm,以增加其霧度,再經過氫氬電漿後處理 30 min,最後以PECVD沉積p-i-n非晶矽層,及熱蒸鍍鋁電極,形成太陽能電池,探討其短路電流、開路電壓、填充因子以及轉換效率等特性。結果顯示沉積溫度100°C之A1FZO薄膜所製備之太陽電池會有最好的轉換效率。

In this study, we deposited Al and F doped zinc oxide thin films on the EagleXG glass by RF magnetron sputtering. Four Al2O3 contents (0 wt%, 1 wt%, 2 wt%, and 4 wt%) and a fixed ZnF2 content (1.5 wt.%) were used to prepare sputtering targets labeled as FZO, A1FZO, A2FZO, and A4FZO, respectively. Effects of Al content, substrate temperature and plasma treatment on electrical properties, micro-structure and optical properties of thin films were investigated.
In the first part, various AFZO thin films were deposited at the substrate temperatures of RT, 100°C, and 200°C. The sputtering was proceeded under the gas ambient of Ar, the RF power of 80 W, the working pressure of 5×10-3 Torr, and the film thickness of 350 nm. Results showed that the as-deposited AFZO films had lower resistivity and better transmittance in the visible range (>91%) at the substrate temperature of 200°C. Among these films, the A1FZO film achieved the lowest resistivity of 2.877×10-4 Ω-cm.
In the second part, all as-deposited AFZO films were post-treated by H2+Ar plasma at 200°C by using a PECVD system. The plasma-treated AFZO film prepared at the lower temperature had larger decrease of resistivity. The film resistivity of the A1FZO film deposited at RT decreased from 5.479×10-4 to 4.247×10-4 Ω-cm. The improvement in film conductivity is due to grain boundary and surface passivation; desorption of oxygen species, hydrogen acting as shallow donors.
In the third part, silicon thin film solar cells were fabricated by using surface-textured and plasma-treated AFZO films as front electrodes. The open-circuit voltage, short-circuit current, fill factor and efficiency of solar cells were investigated. The best efficiency was obtained with the A1FZO film deposited at 100°C.
URI: http://hdl.handle.net/11455/3005
其他識別: U0005-2108201218132100
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.