Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3008
標題: 氧電漿預處理對不同基板上氧化鋅摻氟薄膜特性之影響
Influence of oxygen plasma pre-treatment on properties of F-doped ZnO prepared on different substrates
作者: 張勝證
Chang, Sheng-Cheng
關鍵字: 氧電漿預處理;oxygen plasma pre-treatment;氧化鋅摻氟;聚亞醯胺;聚對苯二甲二乙酯;F-doped ZnO;Polyimide;polyethylene terephthalate
出版社: 光電工程研究所
引用: [1]王慶鈞、王瑞豪、連水養、陳家富, 透明導電薄膜之應用概論. 機械工業雜誌, 2011(338): p. 5-6. [2]安可光電股份有限公司. 產品櫥窗. Available from: http://www.aimcore.com.tw/p2-1.htm. [3]正太科技股份有限公司. 產品項目/產品介紹. Available from: http://www.gem-tech.com.tw/product.asp. [4]Tsai, Y.-Z., N.-F. Wang, and C.-L. Tsai, Formation of F-doped ZnO transparent conductive films by sputtering of ZnF2. Materials Letters, 2009. 63(18): p. 1621-1623. [5]Tsai, Y.-Z., N.-F. Wang, and C.-L. Tsai, Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering. Thin Solid Films, 2010. 518(17): p. 4955-4959. [6]Kwak, D.-J., et al., Growth of ZnO: Al transparent conducting layer on polymer substrate for flexible film typed dye-sensitized solar cell. Current Applied Physics, 2010. 10(2): p. S282-S285. [7]Park, Y.S., et al., Highly flexible indium zinc oxide electrode grown on PET substrate by cost efficient roll-to-roll sputtering process. Thin Solid Films, 2010. 518(11): p. 3071-3074. [8]Kim, E.-H., C.-W. Yang, and J.-W. Park, Improving the delamination resistance of indium tin oxide (ITO) coatings on polymeric substrates by O2 plasma surface treatment. Current Applied Physics, 2010. 10(3): p. S510-S514. [9]Reithe, A., M. Munch, and K.J. Wolter. Effect of surface treatment on the conductive adhesive interconnection of flexible solar cells. in Electronics Technology (ISSE), 2012 35th International Spring Seminar on. 2012. IEEE. [10]Kim, B.G., et al., Structural, electrical and optical properties of Ga-doped ZnO films on PET substrate. Applied Surface Science, 2010. 257(3): p. 1063-1067. [11]Kwon, S., et al., High density plasma treatment of polyimide substrate to improve structural and electrical properties of Ga-doped ZnO films. Thin Solid Films, 2009. 517(23): p. 6298-6300. [12]Ku, D., et al., Effect of fluorine doping on the properties of ZnO films deposited by radio frequency magnetron sputtering. Journal of electroceramics, 2009. 23(2-4): p. 415-421. [13]Yoon, H., et al., Properties of fluorine doped ZnO thin films deposited by magnetron sputtering. Solar Energy Materials and Solar Cells, 2008. 92(11): p. 1366-1372. [14]H.L. Hartnagel, A.K.J., Semiconductiog Transparent Thin Films. Institute of Physics Publishing, 1995. [15]Bagnall, D., et al., Optically pumped lasing of ZnO at room temperature. Applied Physics Letters, 1997. 70: p. 2230. [16]edited by K. L. Chopra, S.R.D., Thin Film Solar Cells, 1983: p. 607. [17]Sato, K., et al., A mechanism of degradation in leakage currents through ZnO varistors. Journal of Applied Physics, 1982. 53(12): p. 8819-8826. [18]Shimizu, Y., et al., Zinc Oxide Varistor Gas Sensors: II, Effect of Chromium (III) Oxide and Yttrium Oxide Additives on the Hydrogen‐Sensing Properties. Journal of the American Ceramic Society, 1998. 81(6): p. 1633-1643. [19]Lee, J.-B., et al., Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications. Thin Solid Films, 2001. 398: p. 641-646. [20]Duo-Fa, W., et al., Synthesis and Optical Properties of ZnO Nanostructures. Chinese Physics Letters, 2005. 22(8): p. 2084. [21]Gomez, H., et al., Properties of Al-doped ZnO thin films deposited by a chemical spray process. Materials characterization, 2007. 58(8): p. 708-714. [22]Park, S.H., J.B. Park, and P.K. Song, Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes. Current Applied Physics, 2010. 10(3): p. S488-S490. [23]Pearton, S., et al., Recent progress in processing and properties of ZnO. Progress in materials science, 2005. 50(3): p. 293-340. [24]Sernelius, B.E., et al., Band-gap tailoring of ZnO by means of heavy Al doping. Physical review. B, Condensed matter, 1988. 37(17): p. 10244-10248. [25]Burstein, E., Anomalous Optical Absorption Limit in InSb. Physical Review, 1954. 93(3): p. 632-633. [26]曾煥華, 電漿的世界. 銀禾文化事業有限公司、台北台灣. 1987(第一章). [27]林春宏、張加強、陳志瑋, [技術專文]次世代平面顯示器生產技術應用-常壓電漿. 光電技術, 2006(No.05). [28]Tsougeni, K., et al., Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir, 2009. 25(19): p. 11748-11759. [29]Boenig, H.V., Plasma Science and Technology. 1982: Carl Hanser Verlag. [30]Campbell, S.A., The science and engineering of microelectronic fabrication. Vol. 476. 1996: Oxford University Press New York. [31]Sze, S.M., Semiconductor Devices: Physics and Technology. 2002(p.55-56). [32]鄭信民, et al., X 光繞射應用簡介. 工業材料雜誌 (181), 頁, 2002: p. 100-108. [33]Cullity, B.D. and S.R. Stock, Elements of X-ray Diffraction. Vol. 3. 2001: Prentice hall Upper Saddle River, NJ. [34]Sanaee, Z., et al., Minimizing permeability of PET substrates using Oxygen plasma treatment. Applied Surface Science, 2011. 257(6): p. 2218-2225. [35]Sanaee, Z., et al., Improved impermeability of PET substrates using oxygen and hydrogen plasma. Vacuum, 2010. 85(2): p. 290-296. [36]Flitsch, R. and D.Y. Shih, A study of modified polyimide surfaces as related to adhesion. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1990. 8(3): p. 2376-2381. [37]Pandiyaraj, K.N., et al., The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate)(PET) film. Surface and Coatings Technology, 2008. 202(17): p. 4218-4226. [38]Lee, J., et al., Effects of O2 plasma pre-treatment on ZnO thin films grown on polyethersulfone substrates at various deposition temperatures by atomic layer deposition. Current Applied Physics, 2010. 10(2): p. S290-S293. [39]KIM, J.Y., et al., Transparent Conducting ZnO: Ga Films Prepared on PEN Substrates by Using RF Magnetron Sputtering. Journal of the Korean Physical Society, 2010. 56(5): p. 1467-1471. [40]Oh, J., J. Lee, and C. Lee, Plasma pretreatment of the Cu seed layer surface in Cu electroplating. Materials chemistry and physics, 2002. 73(2): p. 227-234. [41]Freund, L.B. and S. Suresh, Thin film materials: stress, defect formation and surface evolution. 2003: Cambridge University Press(p.60-83). [42]金智塑膠有限公司. 工程塑膠物性表. Available from: http://www.jin-zhi.com.tw/properties.htm. [43]龍騰科技. 技術資料/熱膨脹係數(Coefficient of thermal expansion,CTE). Available from: http://www.linsgroup.com/Technical/CTE/CTE.html. [44]Ohring, M., The Materials Science of Thin Films. 1992: Academic Press, p.455-461. [45]Minami, T., et al., Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering. Journal of crystal growth, 1992. 117(1): p. 370-374. [46]Kim, D.-H., et al., Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films. Journal of Applied Physics, 2010. 108(2): p. 023520-023520-5. [47]Lin, W., et al., RF magnetron sputtered ZnO: Al thin films on glass substrates: A study of damp heat stability on their optical and electrical properties. Solar Energy Materials and Solar Cells, 2007. 91(20): p. 1902-1905. [48]Tohsophon, T., et al., Damp heat stability and annealing behavior of aluminum doped zinc oxide films prepared by magnetron sputtering. Thin solid films, 2006. 511: p. 673-677. [49]Chen, M., et al., X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science, 2000. 158(1): p. 134-140. [50]Chung, Y.M., et al., The low temperature synthesis of Al doped ZnO films on glass and polymer using pulsed co-magnetron sputtering: H2 effect. Thin Solid Films, 2006. 515(2): p. 567-570. [51]Cao, L., et al., Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition. Solar Energy Materials and Solar Cells, 2011. 95(3): p. 894-898. [52]Haacke, G., New figure of merit for transparent conductors. Journal of Applied Physics, 1976. 47: p. 4086. [53]陳藹然、張育唐. 比爾定律(Beer''s Law)與吸收度(Absorbance),國科會高瞻自然科學教學資源平台. 2011; Available from: http://case.ntu.edu.tw/hs/wordpress/?p=40839. [54]Neamen, D.A., An Introduction to Semiconductor Devices. 2006: McGraw-Hill/Higher education. [55]楊金煥、干化叢、葛亮, 太陽能光伏發電應用技術. 2010, 電子工業出版社(p.50-51).
摘要: 
本研究使用射頻磁控濺鍍法沉積氧化鋅摻氟(ZnO:F, FZO)薄膜於EagleXG玻璃基板、聚亞醯胺(Polyimide, PI)基板與聚對苯二甲二乙酯 (polyethylene terephthalate, PET)基板上,在沉積FZO薄膜前先以電漿增強式化學氣相沉積(Plasma Enhance Chemical Vapor Deposition, PECVD)系統進行氧電漿預處理,研究不同基板經預處理後基板表面水接觸角度、表面形貌與光學特性之變化,再沉積FZO薄膜以研究預處理後薄膜的表面形貌、結構、成分、電性及光學特性之變化,最後搭配稀鹽酸(HCl)蝕刻表面,並製作成矽薄膜結構太陽電池,以探討不同預處理時間對光電轉換效率的影響。
PET基板、glass基板及PI基板經氧電漿預處理30~120秒後其基板表面特性會由疏水性轉為親水性,而經預處理420秒後由於生成含氧極性官能基的減緩導致水接觸角開始上升,會使基板表面特性呈現疏水性狀態。隨預處理時間的增加,所有基板表面粗糙度會呈現越來越粗糙的表面形貌。
FZO薄膜經預處理30秒後沉積薄膜可得到最佳光電特性表現的FZO薄膜,其PET基板、PI基板及glass基板電阻率為 5.489×10-3 Ω-cm、3.153×10-3 Ω-cm及4.214*10-3 Ω-cm,而可見光平均光學穿透率皆約為90 %以上。
FZO薄膜在稀鹽酸蝕刻後薄膜的電阻率會稍微的上升且表面形貌明顯變粗糙,預處理30秒後沉積之FZO 薄膜經過 0.2 % 稀鹽酸蝕刻後,玻璃基板在可見光平均霧度(haze ratio)從 1.79 % 增加到21.96 % ,而PI基板在可見光平均霧度(haze ratio)從2.05 % 增加到21.22 % 。
最後將glass基板與PI基板所沉積之FZO薄膜製作成非晶矽薄膜太陽電池,從結果可看出經過稀鹽酸蝕刻後玻璃基板轉換效率從3.42 % 增加至3.99 % 於預處理30秒後 ,而PI基板轉換效率從3.35 % 增加至3.68 % 於預處理30秒後。

Fluorine-doped zinc oxide (FZO) thin films were deposited on EagleXG glass, PI (polyimide) and PET (polyethylene terephthalate) substrates by RF magnetron sputtering. Prior to the FZO films deposited using a single-chamber plasma enhanced chemical vapor deposition system for oxygen plasma pre-treatment. Influence of surface water contact angle, surface morphology and optical properties was investigated with oxygen plasma pre-treatment for different substrates and treatment times. Then, FZO thin films were deposited on the treated substrates to explore the surface, structural, composition, electrical, and optical properties. Finally, we used dilute hydrochloric acid (HCl) to etch the films to form textured surfaces as front electrodes of amorphous silicon thin film solar cells.. Effect of plasma treatment time on conversion efficiency of the solar cell was investigated.
The surfaces of PET, glass and PI substrates presented hydrophilic characteristic from hydrophobic characteristic after oxygen plasma pretreatment for 30 to 120 s. The water contact angle got rising due to slow oxygen containing polar functional group generated after pre-treated 420 s, then the surface properties of the all substrates presented a hydrophobic surface condition. The surface roughness of the all substrates increased as the pre-treatment time increased.
The FZO films with pre-treatment time of 30 s show the optimum opto-electronic properties. Resistivity of PET, PI and glass substrates were 5.489 *10-3 Ω-cm, 3.153*10-3 Ω-cm and 4.214*10-3 Ω-cm, respectively, while the average optical transmittance in wavelength range of 400-700 nm was over 90 %.
The resistivity and surface roughness were increased as FZO films were etched by 0.2 % HCl solution. After pre-treatment of 30 s and 0.2 % dilute HCl etching, the haze ratio of the FZO film on glass substrate increased from 1.79 % to 21.96 %, while that on the PI substrate increased from 2.05 % to 21.22 %.
The I-V measurement of the fabricated amorphous silicon thin film solar cells employed the etched FZO films as the front electrodes shows that the conversion efficiency increased from 3.42 % to 3.99 % for glass substrates, and from 3.35 % to 3.68 % for PI substrates after a 30-sec oxygen plasma pretreatment.
URI: http://hdl.handle.net/11455/3008
其他識別: U0005-2608201316104600
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.