Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3014
DC FieldValueLanguage
dc.contributor張書通zh_TW
dc.contributorShu-Tong Changen_US
dc.contributor.author黃美華zh_TW
dc.contributor.authorHuang, Mei-Huaen_US
dc.contributor.other光電工程研究所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T05:24:51Z-
dc.date.available2014-06-06T05:24:51Z-
dc.identifierU0005-0907201314104500en_US
dc.identifier.citation[1]Parsons.J., Relaxation of Strained Silicon on Virtual Substrates, PhD Thesis, in Physics.2007,University of Warwick:Coventry [2]E. Quinones, S. K. Ray, K. C. Liu, andS.Banerjee“Enhanced Mobility PMOSFET’s Using Tensile-Strained Si1-yCy Layers,”IEEE Electron Device Lett.,vol.20,pp.338-340,1999. [3]M.Ershov, V. Ryzhii, “Monte-Carlo Study Of Electron Transport In Strained Silicon-Carbon Alloy,” J. Appl. Phys.,vol.76,pp1924-1926,1994.. [4]P.Dollfus,et al.,“Monte Carlo study of sub-0.1 μm Si0.97C0.03/Si MODFET: electron transport and device performance,”IEEE Trans. Electron Dev.,vol.47,pp1247-1250,2000. [5]J.L.Hoyt,T.O.Mitchell,K.Rim,D.Singh,J.F.Gibbons,“Epitaxial Growth And Electronic Characterization Of Carboncontaining Silicon-Based Heterostructures,”Mater.Res. Soc. Symp. Proc.,vol.533,pp263-274,1998. [6]J. Bock, H. Schafer, H. Knapp, D. Zoschg, K. Aufinger, M. Wurzer,S. Boguth, R. Stengl, R. Schreiter,T.F.Meister,“High-speed SiGe:C Bipolar Technology,”IEEE IEDM Tech.Dig.,pp344-347,2001. [7]D. C. Houghton, C. J. Gibbings, C. G. Tuppen, M. H. Lyons, and M. A. G. Halliwell,“Equilibrium critical thickness for Si1−xGex strained layers on (100)Si,”Appl.phys.Lett.,vol.56,p460,1990. [8]C. W. Liu, A. St. Amour, J. C. Sturm, Y. R. J. Lacroix, M. L. W. Thewalt et al.,“Growth and photoluminescence of high quality SiGeC random alloys on silicon substrates,”J.Appl.Phys.,vol.80,pp3043-3047,1996. [9]L.D.Lanzerotti,A.St.Amour,C.W.Liu,J.C.Sturm,J.K.Watanabe,andN.D.Theodore.,“Si/Si1-xGexCy/Si heterojunction bipolar transistors,”IEEE Electron Device Lett., vol.17,pp334-337,1996. [10]D. V. Singh, K. Rim, T. O. Mitchell, J. L. Hoyt, and J. F. Gibbons,“Measurement of the conduction band offsets in Si/Si1−x−yGexCy and Si/Si1−yCy heterostructures using metal-oxide-semiconductor capacitors,”J.Appl.Phys.,vol.85,pp985,1999. [11]D. J. Chadi,“Spin-orbit splitting in crystalline and compositionally disordered semiconductors,”Phys. Rev. B.,vol.16,pp790-796,1979. [12] C. Y. Lin and C. W. Liu,“Hole effective masses in relaxed Si1-xCx and Si1-yGey alloys,”Appl. Phys. Lett.,vol.70,pp1441-1443,1997. [13] S. T. Chang, C. Y. Lin, and C. W. Liu,“Energy band structure of strained Si1-xCx alloys on Si (001) substrate,”J. Appl. Phys.,vol.92,pp3717-3723,2002 [14] J. C. Slater and G. F. Koster,“Simplified LCAO Method for the Periodic Potential Problem,”Phys.Rev.,vol.94,pp1498-1524,1954. [15]B. A. Orner and J. Kolodzey,“Si1−x−yGexCy alloy band structures by linear combination of atomic orbitals,”J. Appl. Phys.,vol.81,pp6773-6780,1997. [16]K.E. Newman and J.D. Dow,“Theory of deep impurities in silicon-germanium alloys,”Phys.Rev. B.,vol.30,pp1929-1936,1984. [17]A.A. Demkov, and O.F. Sankey,“Theoretical investigation of random Si-C alloys,” Phys. Rev.B.,vol.48,pp2207-2214,1993. [18]J. Xie, K. Zcahng, and X. Xie,“Electronic structure of Si1-yCy and Si1-x-yCxGey alloy ,”J.Appl.Phys.,vol.48,pp3868-3871,1995. [19]P.C. Kelires,“Short-range order, bulk moduli, and physical trends in c-Si1-xCx alloys,”Phys.Rev.B.,vol.55,pp8784-8787,1997. [20]Z.-Z. Xu,“Electronic band structure of coherently strained GexSi1-x alloys on Si(001) substrates,”Phys. Rev.B.,vol.47,pp3642-3648,1993. [21]H. Rucker, R. Enderlein and F. Bechstedt,“Strain Effects on the Band Structure of Si/Si1-xGex (001) Superlattices,”Phys.Stat.Sol.(b),vol.53,pp595-609,1989. [22]M.C.Munoz and G.Armelles,“X-point deformation potentials of III-V Semiconductorsin a tight-binding approach,”Phys.Rev.B., vol.48, pp2839-2842, 1993. [23]G.L.Bir and G.E.Pikus ,“Symmetry and Strain-Induced Effects in Semiconductors,” Wiley, New York,pp321,1974. [24]M. M. Rieger and P.,“Electronic-band parameters in strained Si1-yGey alloys on Si1-yGey substrates,”Phys. Rev.B.,vol.48,pp14276-14287,1993. [25]C. G. Van de Walle and R. M. Martin,“Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev.B.,vol.34,pp5621-5634,1986. [26]L. D. Laude, F. H. Pollak, and M. Cardona,“Effects of Uniaxial Stress on the Indirect Exciton Spectrum of Silicon,”Phys. Rev.B.,vol.3,pp2623-2636,1971. [27]P.A.Crowther, P.J. Dean, and W.F.Sherman,“Excitation Spectrum of Aluminum Acceptors in Diamond under Uniaxial Stress,”Phys. Rev.,vol.54,pp772-785,1967. [28]Group IV Semiconducting Materials, edited by M. Neuberger, Handbook of electronic materials (Academic, New York,1971), Vol.5, pp9. [29]Carlo Jacoboni and Lino Reggiani.,“The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev.Mod.Phys.,vol.55,pp645-705.,1983. [30]J.W.Harrison, and J. R. Hauser,“Alloy scattering in ternary III-V compounds,” Phys. Rev.B.,vol.12,pp5347-5350,1976. [31]F.Nava,et al.,“Electron effective masses and lattice scattering in natural diamond,” Solid State Commu.,vol.33,pp475-477.,1980. [32]Fabian M. Bufler,“Full Band Monte Carlo Simulation of Electrons and Holes in Strained Si and SiGe”Munich: Herbert Utz Verlag, 1998.(http://utzverlag.com) [33]Y.Fu, K. J. Grahn, and M. Willander,“Valence band structure of Si1-xGex for hole transport calculation,” IEEE Trans. Electron Devices,vol.41,pp26-31,1994. [34]T.Ghani, et.al,“A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,”IEDM Technical Digest,pp978-981,2003. [35]Min Yang,et at,“Hybrid-orientation technology (HOT): opportunities and challenges ,”IEEE Trans. Electron Dev.,vol.53,pp965-978,2006. [36]Irie.H,et at,“In-plane mobility anisotropy and universality under uni-axial strains in nand p-MOS inversion layers on (100), [110], and (111) Si ,”IEDM Technical Digest,pp225-228,2004. [37]G. Dresselhaus, A. F. Kip, and C. Kittel ,“Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals,”Phys.Rev.,vol.98,pp368-384,1955 [38]J. J. Wortman and R. A. Evans ,“Young''s Modulus, Shear Modulus, and Poisson''s Ratio in Silicon and Germanium,”J. Appl. Phys.,vol.36,pp153,1965. [39]R.Kotlyar, M.D.Giles, P.Matagne, B.Obradovic, L.Shifren, M.Stettler, E.Wang ,“Inversion Mobility and Gate Leakage in High-Metal Gate MOSFETs,”IEDM Tech.Dig.,pp301-394,2004.en_US
dc.identifier.urihttp://hdl.handle.net/11455/3014-
dc.description.abstract新穎矽基材料形成的NMOSFET元件,如矽碳合金,擁有低成本與容易製造的優點。因此在本文我們主要討論在使用新穎矽碳合金通道材料NMOSFET反轉層的電子遷移率,而主題為理論計算塊材矽碳合金材料與矽碳合金通道MOSFET反轉層的電子遷移率。 本文研究用於未來應變矽NMOSFETs之矽碳合金材料的電子遷移率,這裡使用應變矽碳合金於表面通道,伸張應變矽碳層其替代的碳含量磊晶成長於(100)矽基板。 我們討論矽碳合金其塊材與反轉層的能帶結構與電子遷移率:矽碳合金的能帶結構使用緊束縛法求解,電子遷移率矽碳合金計算使用Kubo-Greenwood遷移率公式。計算所使用的模型參數以匹配量測矽於低電場下的遷移率來校準,我們也研究在77K與300K下於(100)矽基板上矽碳雙軸應變的反轉層電子遷移率。zh_TW
dc.description.abstractNew NMOSFET devices formed from novel Si-based materials, such as silicon-carbon (SiC) alloys, are low cost and simple to manufacture. In this thesis, we focus on electron mobility in the inversion layer of NMOSFETs that use novel SiC alloy channel materials. The primary topic of this thesis is the theoretical calculation of electron mobility in bulk SiC alloy materials and SiC alloy channel MOSFET inversion layers. To investigate electron mobility of SiC alloy materials for future use in strained Si NMOSFETs that use strained SiC alloy surface channels are studied in this thesis. Tensile-strained silicon-carbon layers with substitutional carbon content were epitaxially grown on (100) Si substrates. We study the band structure and electron mobility in the bulk and inversion layers for SiC alloys. A tight-binding method is used to study band structure in SiC alloy. The electron mobility in the SiC alloys is calculated with the Kubo-Greenwood mobility formula. The model parameters used in the calculations are calibrated by matching the measured low-field mobility of Si. We studied electron mobility in the inversion layers of biaxial strained SiC on (100) substrate at 77K and 300K.en_US
dc.description.tableofcontents誌謝…………………………………………………i 中文摘要…………………………………………………ii Abstract…………………………………………………iii 目錄…………………………………………………iv 表目錄…………………………………………………v 圖目錄…………………………………………………vi 第一章 導論…………………………………………………1 1.1研究動機…………………………………………………1 1.2文獻回顧…………………………………………………2 第二章 矽基合金能帶計算…………………………………………………3 2.1以修正後LCAO計算Si1-xCx合金…………………………………………………3 2.2應變合金中Tight-binding參數…………………………………………………5 2.3指數標度之值與形變位能…………………………………………………7 第三章 Si1-xCx電子之塊材遷移率…………………………………………………9 3.1能帶結構…………………………………………………9 3.2散射機制…………………………………………………11 3.3傳輸計算…………………………………………………14 第四章 Si1-xCx合金之反轉層次能帶…………………………………………………19 4.1矽導電帶形變的影響…………………………………………………19 4.2反轉層的次能帶…………………………………………………20 第五章 Si1-xCx反轉層電子遷移率…………………………………………………24 第六章 結論與展望…………………………………………………32 參考文獻…………………………………………………33 附錄…………………………………………………37zh_TW
dc.language.isozh_TWen_US
dc.publisher光電工程研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0907201314104500en_US
dc.subject矽基zh_TW
dc.subjectSi-baseden_US
dc.subject能帶zh_TW
dc.subject電子遷移率zh_TW
dc.subjectBand Structureen_US
dc.subjectElectron Mobilityen_US
dc.title矽基合金之能帶與電子遷移率計算zh_TW
dc.titleBand Structure and Electron Mobility Calculations of Si-based Alloysen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:光電工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.