Please use this identifier to cite or link to this item:
標題: 矽基合金之能帶與電子遷移率計算
Band Structure and Electron Mobility Calculations of Si-based Alloys
作者: 黃美華
Huang, Mei-Hua
關鍵字: 矽基;Si-based;能帶;電子遷移率;Band Structure;Electron Mobility
出版社: 光電工程研究所
引用: [1]Parsons.J., Relaxation of Strained Silicon on Virtual Substrates, PhD Thesis, in Physics.2007,University of Warwick:Coventry [2]E. Quinones, S. K. Ray, K. C. Liu, andS.Banerjee“Enhanced Mobility PMOSFET’s Using Tensile-Strained Si1-yCy Layers,”IEEE Electron Device Lett.,vol.20,pp.338-340,1999. [3]M.Ershov, V. Ryzhii, “Monte-Carlo Study Of Electron Transport In Strained Silicon-Carbon Alloy,” J. Appl. Phys.,vol.76,pp1924-1926,1994.. [4]P.Dollfus,et al.,“Monte Carlo study of sub-0.1 μm Si0.97C0.03/Si MODFET: electron transport and device performance,”IEEE Trans. Electron Dev.,vol.47,pp1247-1250,2000. [5]J.L.Hoyt,T.O.Mitchell,K.Rim,D.Singh,J.F.Gibbons,“Epitaxial Growth And Electronic Characterization Of Carboncontaining Silicon-Based Heterostructures,”Mater.Res. Soc. Symp. Proc.,vol.533,pp263-274,1998. [6]J. Bock, H. Schafer, H. Knapp, D. Zoschg, K. Aufinger, M. Wurzer,S. Boguth, R. Stengl, R. Schreiter,T.F.Meister,“High-speed SiGe:C Bipolar Technology,”IEEE IEDM Tech.Dig.,pp344-347,2001. [7]D. C. Houghton, C. J. Gibbings, C. G. Tuppen, M. H. Lyons, and M. A. G. Halliwell,“Equilibrium critical thickness for Si1−xGex strained layers on (100)Si,”Appl.phys.Lett.,vol.56,p460,1990. [8]C. W. Liu, A. St. Amour, J. C. Sturm, Y. R. J. Lacroix, M. L. W. Thewalt et al.,“Growth and photoluminescence of high quality SiGeC random alloys on silicon substrates,”J.Appl.Phys.,vol.80,pp3043-3047,1996. [9]L.D.Lanzerotti,A.St.Amour,C.W.Liu,J.C.Sturm,J.K.Watanabe,andN.D.Theodore.,“Si/Si1-xGexCy/Si heterojunction bipolar transistors,”IEEE Electron Device Lett., vol.17,pp334-337,1996. [10]D. V. Singh, K. Rim, T. O. Mitchell, J. L. Hoyt, and J. F. Gibbons,“Measurement of the conduction band offsets in Si/Si1−x−yGexCy and Si/Si1−yCy heterostructures using metal-oxide-semiconductor capacitors,”J.Appl.Phys.,vol.85,pp985,1999. [11]D. J. Chadi,“Spin-orbit splitting in crystalline and compositionally disordered semiconductors,”Phys. Rev. B.,vol.16,pp790-796,1979. [12] C. Y. Lin and C. W. Liu,“Hole effective masses in relaxed Si1-xCx and Si1-yGey alloys,”Appl. Phys. Lett.,vol.70,pp1441-1443,1997. [13] S. T. Chang, C. Y. Lin, and C. W. Liu,“Energy band structure of strained Si1-xCx alloys on Si (001) substrate,”J. Appl. Phys.,vol.92,pp3717-3723,2002 [14] J. C. Slater and G. F. Koster,“Simplified LCAO Method for the Periodic Potential Problem,”Phys.Rev.,vol.94,pp1498-1524,1954. [15]B. A. Orner and J. Kolodzey,“Si1−x−yGexCy alloy band structures by linear combination of atomic orbitals,”J. Appl. Phys.,vol.81,pp6773-6780,1997. [16]K.E. Newman and J.D. Dow,“Theory of deep impurities in silicon-germanium alloys,”Phys.Rev. B.,vol.30,pp1929-1936,1984. [17]A.A. Demkov, and O.F. Sankey,“Theoretical investigation of random Si-C alloys,” Phys. Rev.B.,vol.48,pp2207-2214,1993. [18]J. Xie, K. Zcahng, and X. Xie,“Electronic structure of Si1-yCy and Si1-x-yCxGey alloy ,”J.Appl.Phys.,vol.48,pp3868-3871,1995. [19]P.C. Kelires,“Short-range order, bulk moduli, and physical trends in c-Si1-xCx alloys,”Phys.Rev.B.,vol.55,pp8784-8787,1997. [20]Z.-Z. Xu,“Electronic band structure of coherently strained GexSi1-x alloys on Si(001) substrates,”Phys. Rev.B.,vol.47,pp3642-3648,1993. [21]H. Rucker, R. Enderlein and F. Bechstedt,“Strain Effects on the Band Structure of Si/Si1-xGex (001) Superlattices,”Phys.Stat.Sol.(b),vol.53,pp595-609,1989. [22]M.C.Munoz and G.Armelles,“X-point deformation potentials of III-V Semiconductorsin a tight-binding approach,”Phys.Rev.B., vol.48, pp2839-2842, 1993. [23]G.L.Bir and G.E.Pikus ,“Symmetry and Strain-Induced Effects in Semiconductors,” Wiley, New York,pp321,1974. [24]M. M. Rieger and P.,“Electronic-band parameters in strained Si1-yGey alloys on Si1-yGey substrates,”Phys. Rev.B.,vol.48,pp14276-14287,1993. [25]C. G. Van de Walle and R. M. Martin,“Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev.B.,vol.34,pp5621-5634,1986. [26]L. D. Laude, F. H. Pollak, and M. Cardona,“Effects of Uniaxial Stress on the Indirect Exciton Spectrum of Silicon,”Phys. Rev.B.,vol.3,pp2623-2636,1971. [27]P.A.Crowther, P.J. Dean, and W.F.Sherman,“Excitation Spectrum of Aluminum Acceptors in Diamond under Uniaxial Stress,”Phys. Rev.,vol.54,pp772-785,1967. [28]Group IV Semiconducting Materials, edited by M. Neuberger, Handbook of electronic materials (Academic, New York,1971), Vol.5, pp9. [29]Carlo Jacoboni and Lino Reggiani.,“The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev.Mod.Phys.,vol.55,pp645-705.,1983. [30]J.W.Harrison, and J. R. Hauser,“Alloy scattering in ternary III-V compounds,” Phys. Rev.B.,vol.12,pp5347-5350,1976. [31]F.Nava,et al.,“Electron effective masses and lattice scattering in natural diamond,” Solid State Commu.,vol.33,pp475-477.,1980. [32]Fabian M. Bufler,“Full Band Monte Carlo Simulation of Electrons and Holes in Strained Si and SiGe”Munich: Herbert Utz Verlag, 1998.( [33]Y.Fu, K. J. Grahn, and M. Willander,“Valence band structure of Si1-xGex for hole transport calculation,” IEEE Trans. Electron Devices,vol.41,pp26-31,1994. [34]T.Ghani,,“A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,”IEDM Technical Digest,pp978-981,2003. [35]Min Yang,et at,“Hybrid-orientation technology (HOT): opportunities and challenges ,”IEEE Trans. Electron Dev.,vol.53,pp965-978,2006. [36]Irie.H,et at,“In-plane mobility anisotropy and universality under uni-axial strains in nand p-MOS inversion layers on (100), [110], and (111) Si ,”IEDM Technical Digest,pp225-228,2004. [37]G. Dresselhaus, A. F. Kip, and C. Kittel ,“Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals,”Phys.Rev.,vol.98,pp368-384,1955 [38]J. J. Wortman and R. A. Evans ,“Young''s Modulus, Shear Modulus, and Poisson''s Ratio in Silicon and Germanium,”J. Appl. Phys.,vol.36,pp153,1965. [39]R.Kotlyar, M.D.Giles, P.Matagne, B.Obradovic, L.Shifren, M.Stettler, E.Wang ,“Inversion Mobility and Gate Leakage in High-Metal Gate MOSFETs,”IEDM Tech.Dig.,pp301-394,2004.

New NMOSFET devices formed from novel Si-based materials, such as silicon-carbon (SiC) alloys, are low cost and simple to manufacture. In this thesis, we focus on electron mobility in the inversion layer of NMOSFETs that use novel SiC alloy channel materials. The primary topic of this thesis is the theoretical calculation of electron mobility in bulk SiC alloy materials and SiC alloy channel MOSFET inversion layers.
To investigate electron mobility of SiC alloy materials for future use in strained Si NMOSFETs that use strained SiC alloy surface channels are studied in this thesis. Tensile-strained silicon-carbon layers with substitutional carbon content were epitaxially grown on (100) Si substrates.
We study the band structure and electron mobility in the bulk and inversion layers for SiC alloys. A tight-binding method is used to study band structure in SiC alloy. The electron mobility in the SiC alloys is calculated with the Kubo-Greenwood mobility formula. The model parameters used in the calculations are calibrated by matching the measured low-field mobility of Si. We studied electron mobility in the inversion layers of biaxial strained SiC on (100) substrate at 77K and 300K.
其他識別: U0005-0907201314104500
Appears in Collections:光電工程研究所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.