Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3018
標題: 週期性微米孔洞陣列矽太陽電池
Periodic micro-hole array silicon solar cells
作者: 賴冠宇
Lai, Guan-Yu
關鍵字: 徑向p-n接面;radial p-n junction;載子收集效率;光捕抓;carrier collection efficiency;light trapping
出版社: 光電工程研究所
引用: [1] 維基百科, http://zh.wikipedia.org [2] AUO, http://www.auo.com [3] NREL, http://www.nrel.gov [4] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar cell efficiency tables (version 41)”, Progress In Photovoltaics: Research and Applications, Vol. 21, pp. 1-11, 2013. [5] 黃偉智,「反置型有機高分子太陽能電池之製作與研究」, 國立中興大學, 碩士論文, 2012. [6] J. Zhao, A. Wang, M.A. Green , F. Ferrazza , “ Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, Vol. 73, pp.1991–1993, 1998. [7] O. Schultz, S. W. Glunz, G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency”, Progress In Photovoltaics: Research and Applications, Vol. 12, pp. 553-558, 2004. [8] R. Venkatasubramanian, B. C. O’Quinn, J. S. Hills, P. R. Sharps, M. L. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, B. Keyes, “18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate”, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, pp. 31–36, May 1997. [9] 翁敏航, 太陽能電池-原理、元件、材料、製程與檢測技術, 東華書局, 第一章, May 2010. [10] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, Progress In Photovoltaics: Research and Applications, Vol.19, pp. 894–897, 2011. [11] Gratzel, “Dye-Sensitized Solid State Heterojunction Solar cells”, MRS Bulletin., Vol. 30, pp. 23-27, 2005. [12] Gang Li, Vishal Shrotriya, Jinsong Huang, Yan Yao, Tommoriarty, Keithemery and Yang Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials, Vol. 4, pp. 864-868, 2005. [13] K. Nishiokaa, S. Horita, K. Ohdaira, H. Matsumura, “Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle”, Solar Energy Materials & Solar Cells, Vol. 92, pp. 919-922, 2008. [14] Peng Kui-Qing, Wang Xin, Li Li, Wu Xiao-Ling and Lee Shuit-Tong, “High-Performance Silicon Nanohole Solar Cells”, Journal of the American Chemical Society, Vol. 132, pp. 6872-6873, 2010. [15] D. Kumar, S. K. Srivastava, P. K. Singha, M. Husainb, V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance”, Solar Energy Materials & Solar Cells, Vol. 95, pp. 215-128, 2011. [16] Yi-An Chang, Zhen-Yu Li, Hao-Chung Kuo, Tien-Chang Lu, Su-Fan Yang, Li-Wen Lai, Li-Hong Lai and Shing-Chung Wang, “Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process”, Semiconductor Science and Technology, Vol. 24, 085007, 2009. [17] 莊嘉琛, “太陽能工程-太陽能電池篇”, 全華圖書股份有限公司出版, June 2007(六版) . [18] H. K. Raut, V. A. Ganesh, A. S. Nair and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review”, Energy and Environmental Science, Vol. 4, pp. 3779-3804, 2009. [19] Y. G. Kavakli and K. Kantarli, “Single and double-layer antireflection coatings on silicon”, Turkish Journal of Physics, Vol. 26, pp. 349–354, 2002. [20] S. K. Srivastava, D. Kumar, Vandana, M. Sharma, R. Kumar, P. K. Singh, “Silver catalyzed nano-texturing of silicon surfaces for solar cell applications” , Solar Energy Materials & Solar Cells, Vol. 100, pp. 33–38, 2012. [21] Jung Jin-Young, Guo Zhongyi, Jee Sang-Won, Um Han-Don, Park Kwang-Tae, Hyun Moon Seop, Yang Jun Mo and Lee Jung-Ho, “A waferscale Si wire solar cell using radial and bulk p–n junctions” , Nanotechnology, Vol. 21, 445303, 2010. [22] Chee Mun Chong, S. R. Wenham, and M. A. Green, “High-efficiency, laser grooved, buried contact silicon solar cells” , Applied Physics Letters, Vol. 52, pp. 407-409, 1988. [23] 黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳, “太陽電池Solar Cell” ,第四章第pp. 172-173,五南圖書出版,2008. [24] Chun-Heng Chen, Ming-Han Liao, Ingram Yin-ku Chang, Pi-Chun Juan, Zingway Pei and Huey-Liang Hwang, “Modified Grating Crystalline Silicon Solar Cells for Next Generation Photovoltaics” , 221st ECS Meeting, Abstract #252, 2012. [25] D. Bouhafs, A. Moussi, M.Boumaour, S. E. K. Abaidia, L. Mahiou, “N+ silicon solar cells emitters realized using phosphoric acid as doping source in a spray process” , Thin Solid Films, Vol. 510, pp. 325-328, 2006. [26] Solar Spectral Irradiance: Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5 [27] EYE Solarlux, http://www.eyesolarlux.com [28] PVCDROM, http://www.pveducation.org [29] U. Gangopadhyay, K. Kim, S. K. Dhungel, P. K. Basub and J. Yi, “Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use” , Renewable Energy, Vol. 31, pp. 1906-1915, 2006. [30] P. Kuiqing, L. Aijiang, Z. Ruiqin and L. Shuit-Tong, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching” , Advanced Functional Materials, Vol. 18, pp. 3026-3035, 2008. [31] 先鋒科技, http://www.teo.com.tw/ [32] Joshua M. Spurgeon, Harry A. Atwater and Nathan S. Lewis, “A Comparison Between the Behavior of Nanorod Array and Planar Cd(Se, Te) Photoelectrodes” , Journal of Physical Chemistry C, Vol. 112, pp. 6186-6193, 2008. [33] M.A. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K” , Progress In Photovoltaics: Research and Applications, vol. 3, pp.189-192, 1995.
摘要: 
本論文中,藉由製作徑向p-n接面微米孔洞陣列結構,使太陽電池增加載子收集效率,而提升短路電流及能量轉換效率﹔並探討微米孔洞陣列結構對太陽入射光之光捕抓效益。

本研究設計四種不同間距的微米孔洞陣列結構,由光阻圖案化定義形成微米結構區塊,接著使用銀催化濕式化學蝕刻完成;在蝕刻時間10 min,直徑10 μm間距40 μm的微米孔洞陣列結構,其平均全反射率降至8.85%。並使用溶膠凝膠法 ( Sol-gel method ) 調配不同的有機溶劑混和磷酸,接著使用旋塗摻雜 ( Spin-on-doping ) 技術製作p-n接面,其中以混和甲醇 ( Methanol ) 達到最好附著效果,其磷擴散深度在0.2 μm內摻雜濃度皆有1017 cm-3以上。

結合上述兩種方式,成功地製作週期性微米孔洞陣列矽太陽電池,其最佳能量轉換效率為9.02%,短路電流為25.5 mA/cm2。

In this thesis, we investigate the infiuence of micro-hole array structure on effect of light trapping, and the effect of solar cell’s efficiency as well. The design of radial p-n junction in micro-hole array was assumed to increase the carrier collection efficiency by horizontal carrier transport. This will improve short circuit current in a solar cell and hence the efficiency.
The micro-hole array structures were accomplished by silver catalyzed wet chemical etching. Four different pitches were designed for micro-hole array with diameter and space is 10 min 10 μm and 40 μm respectively. After micro-hole array fabrication, the solar spectrum weighted total reflection was decreased to around 8.85%. In contrast, the planar Si exhibit reflection around 40%. By used sol-gel method deploy different organic solvents mixed phosphoric, and then fabricate p-n junction by spin-on-doping technique. It find H3PO4:methanol mixture provides the most adherent result, diffusion depth of 0.2 μm and doping concentration is 1017 cm-3.
The fabrication of periodic micro-hole array silicon solar cells is successful. The best performance in terms of power conversion efficiency of 9.02% and the largest short circuit density of 25.5 mA/cm2.
URI: http://hdl.handle.net/11455/3018
其他識別: U0005-2208201316120800
Appears in Collections:光電工程研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.