Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3018
DC FieldValueLanguage
dc.contributor裴靜偉zh_TW
dc.contributorZingway Peien_US
dc.contributor.author賴冠宇zh_TW
dc.contributor.authorLai, Guan-Yuen_US
dc.contributor.other光電工程研究所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T05:24:51Z-
dc.date.available2014-06-06T05:24:51Z-
dc.identifierU0005-2208201316120800en_US
dc.identifier.citation[1] 維基百科, http://zh.wikipedia.org [2] AUO, http://www.auo.com [3] NREL, http://www.nrel.gov [4] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar cell efficiency tables (version 41)”, Progress In Photovoltaics: Research and Applications, Vol. 21, pp. 1-11, 2013. [5] 黃偉智,「反置型有機高分子太陽能電池之製作與研究」, 國立中興大學, 碩士論文, 2012. [6] J. Zhao, A. Wang, M.A. Green , F. Ferrazza , “ Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, Vol. 73, pp.1991–1993, 1998. [7] O. Schultz, S. W. Glunz, G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency”, Progress In Photovoltaics: Research and Applications, Vol. 12, pp. 553-558, 2004. [8] R. Venkatasubramanian, B. C. O’Quinn, J. S. Hills, P. R. Sharps, M. L. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, B. Keyes, “18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate”, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, pp. 31–36, May 1997. [9] 翁敏航, 太陽能電池-原理、元件、材料、製程與檢測技術, 東華書局, 第一章, May 2010. [10] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, Progress In Photovoltaics: Research and Applications, Vol.19, pp. 894–897, 2011. [11] Gratzel, “Dye-Sensitized Solid State Heterojunction Solar cells”, MRS Bulletin., Vol. 30, pp. 23-27, 2005. [12] Gang Li, Vishal Shrotriya, Jinsong Huang, Yan Yao, Tommoriarty, Keithemery and Yang Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials, Vol. 4, pp. 864-868, 2005. [13] K. Nishiokaa, S. Horita, K. Ohdaira, H. Matsumura, “Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle”, Solar Energy Materials & Solar Cells, Vol. 92, pp. 919-922, 2008. [14] Peng Kui-Qing, Wang Xin, Li Li, Wu Xiao-Ling and Lee Shuit-Tong, “High-Performance Silicon Nanohole Solar Cells”, Journal of the American Chemical Society, Vol. 132, pp. 6872-6873, 2010. [15] D. Kumar, S. K. Srivastava, P. K. Singha, M. Husainb, V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance”, Solar Energy Materials & Solar Cells, Vol. 95, pp. 215-128, 2011. [16] Yi-An Chang, Zhen-Yu Li, Hao-Chung Kuo, Tien-Chang Lu, Su-Fan Yang, Li-Wen Lai, Li-Hong Lai and Shing-Chung Wang, “Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process”, Semiconductor Science and Technology, Vol. 24, 085007, 2009. [17] 莊嘉琛, “太陽能工程-太陽能電池篇”, 全華圖書股份有限公司出版, June 2007(六版) . [18] H. K. Raut, V. A. Ganesh, A. S. Nair and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review”, Energy and Environmental Science, Vol. 4, pp. 3779-3804, 2009. [19] Y. G. Kavakli and K. Kantarli, “Single and double-layer antireflection coatings on silicon”, Turkish Journal of Physics, Vol. 26, pp. 349–354, 2002. [20] S. K. Srivastava, D. Kumar, Vandana, M. Sharma, R. Kumar, P. K. Singh, “Silver catalyzed nano-texturing of silicon surfaces for solar cell applications” , Solar Energy Materials & Solar Cells, Vol. 100, pp. 33–38, 2012. [21] Jung Jin-Young, Guo Zhongyi, Jee Sang-Won, Um Han-Don, Park Kwang-Tae, Hyun Moon Seop, Yang Jun Mo and Lee Jung-Ho, “A waferscale Si wire solar cell using radial and bulk p–n junctions” , Nanotechnology, Vol. 21, 445303, 2010. [22] Chee Mun Chong, S. R. Wenham, and M. A. Green, “High-efficiency, laser grooved, buried contact silicon solar cells” , Applied Physics Letters, Vol. 52, pp. 407-409, 1988. [23] 黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳, “太陽電池Solar Cell” ,第四章第pp. 172-173,五南圖書出版,2008. [24] Chun-Heng Chen, Ming-Han Liao, Ingram Yin-ku Chang, Pi-Chun Juan, Zingway Pei and Huey-Liang Hwang, “Modified Grating Crystalline Silicon Solar Cells for Next Generation Photovoltaics” , 221st ECS Meeting, Abstract #252, 2012. [25] D. Bouhafs, A. Moussi, M.Boumaour, S. E. K. Abaidia, L. Mahiou, “N+ silicon solar cells emitters realized using phosphoric acid as doping source in a spray process” , Thin Solid Films, Vol. 510, pp. 325-328, 2006. [26] Solar Spectral Irradiance: Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5 [27] EYE Solarlux, http://www.eyesolarlux.com [28] PVCDROM, http://www.pveducation.org [29] U. Gangopadhyay, K. Kim, S. K. Dhungel, P. K. Basub and J. Yi, “Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use” , Renewable Energy, Vol. 31, pp. 1906-1915, 2006. [30] P. Kuiqing, L. Aijiang, Z. Ruiqin and L. Shuit-Tong, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching” , Advanced Functional Materials, Vol. 18, pp. 3026-3035, 2008. [31] 先鋒科技, http://www.teo.com.tw/ [32] Joshua M. Spurgeon, Harry A. Atwater and Nathan S. Lewis, “A Comparison Between the Behavior of Nanorod Array and Planar Cd(Se, Te) Photoelectrodes” , Journal of Physical Chemistry C, Vol. 112, pp. 6186-6193, 2008. [33] M.A. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K” , Progress In Photovoltaics: Research and Applications, vol. 3, pp.189-192, 1995.en_US
dc.identifier.urihttp://hdl.handle.net/11455/3018-
dc.description.abstract本論文中,藉由製作徑向p-n接面微米孔洞陣列結構,使太陽電池增加載子收集效率,而提升短路電流及能量轉換效率﹔並探討微米孔洞陣列結構對太陽入射光之光捕抓效益。 本研究設計四種不同間距的微米孔洞陣列結構,由光阻圖案化定義形成微米結構區塊,接著使用銀催化濕式化學蝕刻完成;在蝕刻時間10 min,直徑10 μm間距40 μm的微米孔洞陣列結構,其平均全反射率降至8.85%。並使用溶膠凝膠法 ( Sol-gel method ) 調配不同的有機溶劑混和磷酸,接著使用旋塗摻雜 ( Spin-on-doping ) 技術製作p-n接面,其中以混和甲醇 ( Methanol ) 達到最好附著效果,其磷擴散深度在0.2 μm內摻雜濃度皆有1017 cm-3以上。 結合上述兩種方式,成功地製作週期性微米孔洞陣列矽太陽電池,其最佳能量轉換效率為9.02%,短路電流為25.5 mA/cm2。zh_TW
dc.description.abstractIn this thesis, we investigate the infiuence of micro-hole array structure on effect of light trapping, and the effect of solar cell’s efficiency as well. The design of radial p-n junction in micro-hole array was assumed to increase the carrier collection efficiency by horizontal carrier transport. This will improve short circuit current in a solar cell and hence the efficiency. The micro-hole array structures were accomplished by silver catalyzed wet chemical etching. Four different pitches were designed for micro-hole array with diameter and space is 10 min 10 μm and 40 μm respectively. After micro-hole array fabrication, the solar spectrum weighted total reflection was decreased to around 8.85%. In contrast, the planar Si exhibit reflection around 40%. By used sol-gel method deploy different organic solvents mixed phosphoric, and then fabricate p-n junction by spin-on-doping technique. It find H3PO4:methanol mixture provides the most adherent result, diffusion depth of 0.2 μm and doping concentration is 1017 cm-3. The fabrication of periodic micro-hole array silicon solar cells is successful. The best performance in terms of power conversion efficiency of 9.02% and the largest short circuit density of 25.5 mA/cm2.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 太陽電池發展簡介 3 1.2.1 第一代太陽電池 6 1.2.2 第二代太陽電池 7 1.2.3 第三代太陽電池 7 1.3 研究動機 8 1.3.1 文獻回顧 8 第二章 太陽電池工作原理 12 2.1 太陽光光譜 12 2.2 太陽電池工作原理 14 2.3 太陽電池之光學設計原理 23 2.3.1 四分之一抗反射薄膜原理 23 2.3.2 金字塔結構之抗反射原理 25 2.3.3 次波長結構之抗反射原理 26 2.4 銀催化濕式化學蝕刻反應機制 28 第三章 實驗方法與步驟 30 3.1 實驗材料介紹 30 3.1.1 實驗基板 30 3.1.2 週期性微米孔洞陣列之光罩 30 3.2 實驗流程 33 3.2.1 週期性微米孔洞陣列製作流程 33 3.2.2 磷玻璃溶膠溶液製作p-n二極體之製作流程 46 3.2.3 週期性微米孔洞陣列矽太陽電池製作流程 49 3.3 實驗機台與量測儀器介紹 52 3.3.1 手套箱 ( Glove box ) 52 3.3.2 高真空蒸鍍機 ( High vacuum thermal evaporation,TE ) 53 3.3.3 旋轉塗佈機 ( Spin coator ) 54 3.3.4 高溫爐管 ( Furnace ) 54 3.3.5 太陽電池I-V量測系統 54 3.3.6 太陽電池外部量子效率量測系統 (EQE) 55 3.3.7 紫外光可見光近紅外光光譜儀 55 3.3.8 四點探針量測儀 ( Four-point probe tester ) 56 3.3.9 場發射掃描式電子顯微鏡 ( FFSEM ) 56 3.3.10 展阻量測系統 ( Spreading Resistance Probe System ) 56 第四章 實驗結果與討論 57 4.1 週期性微米孔洞陣列結構於矽表面 57 4.1.1 數據分析 58 4.2 磷酸混和溶液製作p-n接面 66 4.2.1 數據分析 67 4.3 週期性微米孔洞陣列矽太陽電池 73 4.3.1 磷擴散溫度與不同間距之影響 73 4.3.2 數據分析 74 4.3.3 不同孔洞深度之影響 81 4.3.4 數據分析 82 第五章 結論 88 參考文獻 89zh_TW
dc.language.isozh_TWen_US
dc.publisher光電工程研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201316120800en_US
dc.subject徑向p-n接面zh_TW
dc.subjectradial p-n junctionen_US
dc.subject載子收集效率zh_TW
dc.subject光捕抓zh_TW
dc.subjectcarrier collection efficiencyen_US
dc.subjectlight trappingen_US
dc.title週期性微米孔洞陣列矽太陽電池zh_TW
dc.titlePeriodic micro-hole array silicon solar cellsen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.languageiso639-1zh_TW-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:光電工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.