Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3019
標題: 還原氧化石墨烯濃度對以溶膠凝膠法製備氧化鋅摻鋁薄膜特性之影響
Influence of concentration of reduced graphene oxide on properties of sol-gel prepared Al-doped Zinc oxide thin films
作者: 陳崴群
Chen, Wei-Chun
關鍵字: 還原氧化石墨烯;Reduced Graphene Oxide;溶膠凝膠法;透明導電膜;氧化鋅摻鋁;Sol-Gel;Transparent Conductive Film;Al-doped ZnO
出版社: 光電工程研究所
引用: [1]Z.A.Ansani, R.N.Karekar,R.C.Aiyer,“Humidity sensor using planar optical waveguides with claddings of various oxide materials”, Thin Solid Films 305(1997)330-337 [2]Jae-Hyeong Lee ,Jun-Tan Song,“Dependence of the electrical and optical properties on the bias voltage for ZnO : Al films deposited by r.f. magnetron sputtering”, Thin Solid Films 516(2008)1377-1381 [3]C.Li , M. Furuta , T.Matsuda,T.Hiramatsu,H.Furuta ,T.Hirao,“Effects of substrate on the structural, electrical and optical properties of Al doped ZnO films prepared by radio frequency magnetron sputtering” Thin Solid Films 517(2009)3265-3268 [4]A. K. Geim, “Graphene: Status and Prospects”, Science, 324(2009) 1530-1534 [5]K . S. Novoselov, “Electric field effect in atomically thin carbon films”, Science 306 (2004) 666–6693 [6]M. Jacoby, Graphene: “Carbon as thin as can be”, Chem.& Eng. News, 87, (2009)12-20 [7]黃淑娟、郭信良等編著“石墨稀材料與應用”工業材料雜誌(2011) 62 [8]楊明輝編著“透明導電膜” 藝軒圖出版社(2006) 56-75 [9]王建義編譯“薄膜工程學” 全華圖書股份有限公司(2003) 35-40 [10]江松勳“AZO 透明導電膜之製備與特性分析”國立成功大學化學工 程學系碩士論文(2006) 20-21 [11]潘漢昌,蕭銘華,蘇建穎“透明導電膜簡介”科儀新知, (2004) 26-31 [12]楊明輝 “金屬氧化物透明導電膜材料的基本原理”, 工業材料第179 期,(1999) 134 [13]陳德請編著“近代光電顯示工程導論”全華科技圖書股份有限公司(2006) 38-46 [14]H. W. Lee, S. P. Laua ,Y. G. Wanga, K. Y, Tse, H. H. Hng, and B. K. Tay, “Crystal growth, structure and morphology of hydrocortisone methanol solvate”,J.Cryst.Growth,268(2004) 596-601 [15]T. Mtinami, H. Nanto, and S. Takata, Jpn. “Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering” J . Appl. Phys .24(1985) L781-784 [16]Kuang Yang Kuo,Shu-Wei Hsu,Pin-Ruei Hang, “Optical properties and sub-bandgap formation of nano-crystalline Si quantum dots embedded ZnO thin film”, Optics Express, Vol. 20, Issue 10, (2012) 10470-10475 [17]M.L.Hu,C.T. Chia, J.Y. Chang, W.S. Tse and J.T. Yu, “Low-temperature Raman study of zinc-doped lithium niobate crystal powders”,Mater. Chem. Phys. 78 (2002) 358 [18]柯賢文編著“表面與薄膜處理技術”全華科技圖書股份有限公司 (2005) 15-20 [19]J.H .Lee and B .O .Park ,T .Kimura , “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method”, Thin Solid Films,426 (2003)94-99 [20]T. Tsuchiya, T. Enomoto, and T. Sei, J. “Silica phase formed by sol–gel reaction in the nano- and micro-pores of a polymer hydrogel” Non-Cryst.Soilds,178 (1994) 327 [21]Masahiro Toyoda, Junko Watanabe, Toshifumi Matsumiya Evolution of “Structure of the Precursor During Sol-Gel Processing of ZnO and Low Temperature Formation of Thin Films” Journal of Sol-Gel Science and Technology, Volume 16, Issue 1-2,(1999) 93-99 [22]W. Tang and D.C.Cameron,“Reflectivity of gradient-index multi-coated films prepared by the sol-gel process”Thin Solid Films,238, (1994)83 [23]A. K. Geim and K. S. Novoselov “The rise of the grapheme” Nat Mater .6 (2007)183 [24]V. Kohlschutter and P. Haenni. Zur Kenntnis “The Graphitischen Kohlenstoffs under Graphite”, 105 (1981)121–144 [25]K. S. Novoselov, “Electric field effect in atomically thin carbon films”, Science ,306(2004)6667–6693 [26]Ferrari, A. C.; J. C. Meyer2, V. Scardaci1, C. Casiraghi1, M. Lazzeri3, F. Mauri3, S. Piscanec1, D. Jiang4, K. S. Novoselov4, S. Roth2, and A. K. Geim. “Raman spectrum of graphene and graphene layers.”Physics review letters., 97 (2006)187-191 [27]Li X ,Zhang. G, Bai. X ,Wang. E, and Dai. H,“Highly conducting grapheme sheets and Langmuir”,Nat.Nanotech.3,(2008)538-539 [28]J. Hass, W .A.de Herr, and E. H. Conrad, “The growth and morphology of epitaxial grapheme, J. Phys:Condens. Matter 20, (2008)202-213 [29]Nair, R. R. et al.. Fine Structure Constant Defines Visual Transparency of Graphene. Science., 320 ,5881(2009)1307- 1308 [30]Zhang, Y. et al. Direct observation of a widely tunable band gap in bilayer graphene. Nature, 459, (2009)189-192 [31]Dislich, H.; Hinz, P. J. Sol-gel coating films for optical and electronic application Non-Cryst. Solids, 48, (1982) 11 [32]Thomas, I. M. Klein,C. C., Eds.;Noyes: Park Ridge“In Sol-Gel Technology for Thin Films Fibers Preforms Electronics and Specialty Shapes”(1998) Chap 1 [33]Takahashi, Y.; Wada, Y. J. Metal‐Carbon Composite Materials from Fiber Precursors: I . Preparation of Stainless Steel—Carbon Composite Electrodes”Electrochem. Soc, (1990) 137-141 [34]Henry, M.; Jolivet, J.P.; Livage, J. “In Ultrastructure Processing of Advanced Materials ( Uhlmann, D. R.; Ulrich, D. R. Eds.; Wiley: New York, , (1992) Chap 3 [35]Gasparro, G.; Putz, J.; Ganz, D.; Aegerter, M.A. Computer simulations of light scattering and absorption in dye-sensitized solar cells Solar Energy Mater. Solar Cells, 54, (1998)265-275 [36]C . J. Brinker and G. W. Scherer ,Sol-gel Science: “ The Physics and Chemistry of Sol-Gel Processing”,Academic Press: San Diego, CA(1990)181-192 [37]羅吉宗編著“薄膜科技與應用” 全華圖書有限公司,(2004)105-109 [38]Weifeng Liu, Guotong Du, Yanfeng Sun, Yibin Xu, Tianpeng Yang,Xinsheng Wang, Yuchun Chang, Fabin Qiu, “ Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering: H2-inducedproperty changes ”,Thin Solid Films 515 (2007) 3057–3060 [39]Sun Yanfeng, Weifeng Liu, He Zhidan, Liu Shaolin, Zou Zhao Yi, Guotong Du ,“Novel properties of AZO film sputtered in Ar+H2 ambient at high temperature”, Vacuum 80 (2006) 981–985 [40]Scherdel C, Gayer R, Slawik T, Reichenauer G, Scherb T “Organic and carbon xerogels derived from sodium carbonate control polymerization of aqueous phenol-formaldehyde solutions”.J Porous Mater (2011)18:443–450 [41]Sharma A, Kyotani T, Tomita A “Comparison of structural parameters of PF carbon from XRD and HRTEM techniques”. Carbon 38: (2000)1977–1984 [42]Ling Liu ,Jie Yang ,Qinghan Meng, “Graphene cross-linked phenol–Formaldehyde hybrid organic and carbon xerogel during ambient pressure drying” J Sol-Gel Sci Technol (2013) 66:1–5 [43]Meizhen Gao, Xiaonan Wu, Jing Liu, Wenbao Liu, “The effect of heating rate on the structural and electrical properties of sol–gel derived Al-doped ZnO films”, Applied Surface Science 257 (2011) 6919–6922 [44]Byenog-Yun Oh, Min-Chang Jeong, Jae-Min Myoung, “ Stabilitzation in electrical characteristics of hydrongen-annealed ZnO:Al films ”, Applied Surface Science253(2007) 7157-7161 [45]Fatima Tuz Johra , Mi-Jung Lee ,Woo-Gwang Jung, “Solution-based fabrication of a graphene–ZnO nanocomposite” J Sol-Gel Sci Technol 66: (2013) 481–487 [46]蔡宗典“超薄ITO透明導電膜應用在觸控面板之研究”國立中央大學光電工程學系碩士論文 (2008)45-55 [47]蘇清源“石墨烯氧化物之特性與應用前景”物理專文.(2011) 163-167 [48]Xiao gang Chen , Yun qiu He, Qiong Zhang, Lin jiangLi, “Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its photocatalytic properties” J Mater Sci (2010) 45: 953–960 [49]Qian Shi, Kesong Zhou,Min jiang Dai,“Room temperature preparation of High performanceAZO films by MF sputtering”,Ceramics International 39(2013) 1135-1141
摘要: 
本論文主要探討以還原的氧化石墨烯(Reduced Graphene Oxide, RGO) ,摻雜於氧化鋅摻鋁(Aluminum doped Zinc Oxide,AZO)中並對薄膜作電性及光學特性上的分析。實驗方法以溶膠凝膠法(sol-gel)旋轉塗佈在玻璃基板上,分別以不同重量濃度0.0 wt%, 1.0 wt%, 1.5 wt%, 3.0 wt%作為摻雜比例,完成後以Ar:H2=9:1的混合氣體通入爐管中並以攝氏500℃作熱退火處理一小時。在電性量測中,未摻雜RGO的AZO薄膜所量測電阻率約為1.11ⅹ10-1 Ω-cm,在摻入RGO 1.0 wt%後得到最低電阻率為8.11ⅹ10-3 Ω-cm。光學分析中,摻入RGO 1.0 wt%時,AZO薄膜的透光率由未摻雜的92%下降至摻雜後的81%,實驗結果顯示RGO會吸收部分可見光,影響了AZO薄膜的透光率。
在掃描式電子顯微鏡(Scanning Electron Microscope, SEM)分析表面量測結果中,清楚顯示RGO顆粒均勻分散塗佈在AZO薄膜表面上。以能量散射光譜儀(Energy Dispersive Spectrometer, EDS)做成份分析,顯示AZO薄膜中碳的比例增加,證明本實驗中RGO有效摻雜於溶膠凝膠中。X光繞射分析( X-ray diffraction , XRD)中,RGO摻雜濃度的增加使得表面晶體顆粒逐漸增加,在摻雜至3.0 wt%時,繞射峰值的2θ角度由未摻雜的34.42。往右偏移至34.4。,由此證明RGO不同濃度的摻雜比例會影響薄膜結晶結構的分佈。

The addition of reduced graphene oxide (RGO) to aluminum doped zinc oxide was studied and analysis conducted on film for its electrical and optical characteristics. Sol-gel was applied in a circular pattern on glass substrate with the weight concentration of 0.0 wt%, 1.0 wt%, 1.5 wt% and 3.0 wt% as the proportion of mixing. A gaseous mixture of Ar:H2=9:1 was passed through furnace pipe and the substrate was annealed in 500℃ for an hour. In electric measurement, the resistivity was 1.11ⅹ10-1 Ω-cm for RGO-free AZO film, and the lowest resistivity was 8.11ⅹ10-3 Ω-cm with RGO at 1.0 wt%. For optical analysis, when 1.0 wt% of RGO is added, the transmittance of AZO film dropped from 92% without addition to 81% with addition.The experiment showed that RGO absorbed part of visible light and thus reduced the transmittance of AZO film.
When analyzing surface measurement using a scanning electron microscope(SEM), it clearly showed that the RGO particles were distributed evenly across the surface of AZO film. The composition analysis using energy dispersive spectrometer (EDS) revealed carbon content in the AZO film, demonstrating that RGO was mixed effectively in the sol-gel. In the X-ray diffraction (XRD) analysis, the increase of RGO mixing concentration contributed to the increasing grain size of crystals on the surface. When mixing to 3.0 wt%, the 2θ angle of refraction peak shifted to the right from 34.42° with no mixing to 34.4°. It showed that the different mixing proportions of RGO at various concentrations had influence on the distribution of crystalline structure of the film.
URI: http://hdl.handle.net/11455/3019
其他識別: U0005-2608201320525400
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.