Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3020
標題: 銅摻雜效應對氧化鋅奈米柱陣列微結構與特性的影響
Effect of Cu doping on the microstructure and characteristics of ZnO nanorod arrays
作者: 陳祥熙
Hei, Chin-Siong
關鍵字: 水熱法;hydrothermal method;氧化鋅奈米柱;化學濕式蝕刻;ZnO Nanorods;chemical wet ethching
出版社: 光電工程研究所
引用: [1] 張品全,“太陽電池”,科學發展,349期,22~29頁,1月(2002). [2] 藤元薰,"擔持金屬觸媒 Ni 選擇性的制抑",Vol. 22, No. 71,(1984) [3] “Synthesis of Low-density Microellular Materials", MRS Bulletin/December, 21, (1990). [4] J. D. Lemay, R. W. Happer, MRS Bulletin, 31, (1990). [5] Y.Takao, Y.Iwanaga, Y.Shimizu, M.Egashira, “Trimethylamine-sensing mechanism of TiO2-based sensors 1. Effects of metal additives on trimethylamine-sensing properties of TiO2 sensors”, Sensors and Actuators B 10, 229-234 (1993). [6] K.Ema, M.Yokoyama, T.Nakamoto, T.Moriizumi, “Odour-sensing system using a quartz-resonator sensor array and neural-network pattern recognition”, Sensors and Actuators 18, 291-296 (1989). [7] T. Nakamoto, A. Fukuda, and T. Moriizimi, “Perfume and flavour identification by odour-sensing system using quartz-resonator sensor array and neural-network pattern recognition”, Sensors and Actuators B 10, 85-90 (1993). [8] B. Bourrounet, T. Talou and A. Gaset, “Application of a multi-gas-sensor device in the meat industry for boar-taint detection”, Sensors and Actuators B 26-27, 250-254 (1995). [9] J. W. Gardner , H.V. Shurmer, T.T. Tan, “Application of an electronic nose to the discrimination of coffees”, Sensors and Actuators B 6, 71-75 (1992). [10] T. Nakamoto, H. Takagi, S. Utsumi, and T. Moriizumi, “Gas/odor identification by semiconductor gas-sensor array and an analog artificial neural-network circuit”, Sensors and Actuators B 8, 181-186 (1992). [11] H.M. Lin, C.H. Keng, and C.Y. Tung, “Gas-sensing properties of nanocrystalline TiO2”, Nanostructured Materials 9, 747-750 (1997). [12] G. Martinelli, M.C. Carotta, E. Traversa, and G. Ghiotti, “Thick films microsensors based on nano-sized semiconducting oxide powders”, MRS Bulletin, June, pp.30-36 (1999). [13] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda and J. H. Harding , “Growth of ZnO thin films—experiment and theory”, J. Mater. Chem., 15 139–148 (2005) [14] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, SIENCE 292, 1897, 2001. [15] 林素霞,“氧化鋅薄膜特性改良與應用”,博士論文,國立成功大學材料科學研究所(2003). [16] Triboulet R, PROC. SPIE 1-8, 4412, 2001. [17] 張修誠,郭正次 “鋁薄膜輔助常溫水溶液法製備氧化鋅奈米結構之製程及其性質”,國立交通大學碩士論文,民國九十七年 [18] E. S. Kim, and R. S. Muller, “IC-processed piezoelectric microphone”, IEEE electron device lett., 8 467-468 (1987) [19] C. Barrett, T. B. Massalski, “Structure of Metals 3rd revised edition: Crystallographic Methods, Principles, and Data”, International Series on Materials Science and Technology, 35(1987) [20] 傅聖峰,“製備磁性奈米粒子供免疫球蛋白之分離純化研究”,碩士論文,國立成功大學生物科技研究所(2006) [21] D.J. Park, J.Y. Lee, D.C. Kim, S.K. Mohanta, and H.K. Cho, “Defects in interfacial layers and their role in the growth of ZnO nanorods by metallorganic chemical vapor deposition”, Appl. Phys Lett.,91,143115(2007) [22] Y.Ding, P.X. Gao,and Z.L. Wang, “Catalyst−Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts:  A Case of Sn/ZnO”, J.Am. Chem. Soc.,126(7),2066(2004) [23] J.J. Wu and S.C. Liu, “Catalyst-Free Growth and Characterization of ZnO Nanorods”, J. Phys. Chem. B, 106,9546(2002) [24] Z.W. Pan, Z.R. Dai, and Z.L. Wang, “Nanobelts of Semiconducting Oxides”, Science, 291,1947(2001) [25] R.M. Wang, Y.J. Xing, J. Xu, and D.P. Yu, “Fabrication and microstructure analysis on zinc oxide nanotubes”, New J. Phys.,5,115.1-115.7(2003) [26] P.X. Gao and Z.L. Wang, “Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process”, J. Phys. Chem., B 108, 7534-7537(2004) [27] M. Law, D.J. Sirbuly, J.C. Johnson, J. Goidbberger, R.J. Saykally, and P. Yang, “Nanoribbon Waveguides for Subwavelength Photonics Integration”, Science, 305, 1269(2004) [28] Jason B. Baxter, and Eray.S. Aydil, “Nanowire-based dye-sensitized solar cells”, Appl. Phys. Lett., 86, 053114(2005) [29] M. Gao, W.Li, Y. Liu, Q. Li, Q. Chen and L.M. Peng, “Microphotoluminescence study of individual suspended ZnO nanowires”, Appl. Phys. Lett., 92, 113112(2008) [30] Z. Fan and J.G. Lu, “Gate-refreshable nanowire chemical sensors”, Appl. Phys. Lett., 86, 123510(2005) [31] 吳金寶,“氧化鋁鋅(AZO)透明導電薄膜技術發展與應用”,工業材料雜誌(2008). [32] Jin-Hong Lee, Byung-Ok Park , “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method”, Thin Solid Films, 426, 94 (2003) [33] Donnay J.D.H., Harker D., “A new law of crystal morphology extending the law of bravais”, AMER. MINERAL. 22, 446-467, (1937) [34] Hartman P, Perdok WG, “On the relations between structure and morphology of crystals. III”, ACTA CRYSTSLLOGR. 8, 525, (1955) [35] R. A. Laudise, and A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide”, J. Phys. Chem., 64, 688 (1960) [36] Zhong WZ, Liu GZ, “Growth units and formation mechanisms of the crystals under hydrothermal conditions”, Sci. CHINA (B) 24, 394 (1994) [37] Li WJ, Shi EW, Zhong WZ, Yin ZW, “Growth mechanism and growth habit of oxide crystals”, JOURNAL OF CRYSTAL GROWTH 203, 186-196, (1999) [38] 陳重維,紀國鐘,“銪元素摻雜於氧化鋅奈米線特性研究”,碩士論文,國立中央大學 (2008) [39] 江朋威,“以不同催化劑成長之氧化鋅奈米柱應用於染料敏化太陽能電池”, 碩士論文,國立中興大學(2010) [40] 蔡裕榮,周禮君,“以溶膠凝膠法製備透明導電氧化物薄膜探討”,碩士論文,國立中正學 (2001) [41] Apurba, D.; Soumitra, K.; Subhadra, C. “Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route” J. Phys. Chem. B, A-E. (2006) [42] 賴致遠,吳季珍,“化學浴沉積法和成氧化鋅奈米線及其特性分析”,碩士論文,國立成功大學化學工程研究所(2006) [43] Maoshui Lv, Xianwu Xiu, Zhiyong Pang, Ying Dai, Shenghao Han, “Influence of the deposition pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering”, Applied Surface Science,Vol.252 5687–5692(2006) [44] 謝嘉民、賴一凡,“光激發螢光量測的原理、架構及應用”,奈米通訊,第十二卷第二期 [45] T. Rattana, S. Suwanboon, P. Amornpitoksuk, A. Haidoux, P. Limsuwana, “Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modified zinc nitrate solution”, J. of Alloys and Compounds, vol. 480, pp.603-607. (2009) [46] Singh AK, Viswanath V, Janu VC, “Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles”, J. of luminescence, vol. 129, pp.874-878. (2009) [47] Fang TH, Kang SH, “Surface and physical characteristics of ZnO:Al nanostructured films”, J. Apple. Phys., vol. 150, 113512. (2009) [48] S. Baek, J. Song, S.Lim, “Improvement of the optical properties of ZnO nanorods by Fe doping”, Phy. B, vol. 399, pp. 101-104. (2007) [49] R. Kumar, N. Khare, “Temperature dependence of conduction mechanism of ZnO Co-doped ZnO thin film”, Thin Solid Films, vol. 516, pp. 101-104(2008) [50] Huang, M. h.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. “Room-Temperature Ultraviolet Nanowire Nanolasers” Science, 292, 1897-1899.(2001) [51] Qingwei Li, Jiming Bian, Jingchang Sun, Jingwei Wang, Yingmin Luo, Kaitong Sun, Dongqi Yu, “Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method”, Applied Surface Science 256 1698–1702. (2010) [52] 張國慶,"怖植矽離子與怖植氮離子與氧化鋅薄膜之特性分析及氧化鋅薄膜與金屬的毆姆接觸研究”,碩士論文,國立中央大學光電科學研究所。(2004) [53] H. S. Kang, J. S. Kang, J. W. Kim, S. Y. Lee, “Annealing effect on the property of ultraviolet and green emissions of ZnO thin films”, Journal of Applied Physics,vol. 95, pp.1246-1250. (2004) [54] Xu C, Koo TW, Kim BS, Lee JH, Hwang SW, Whang D., “Large-Scale Solution-Phase Growth of Cu-Doped ZnO Nanowire Networks”, Journal of Nanoscience and Nanotechnology, Vol. 11, 6062–6066, (2011) [55] Wu, J. J.; Liu, S. C. “Low Temperature Growth of Well Aligned ZnO nanorods by chemical vapor deposition” Adv. Mater., 14, 215-218.(2002)
摘要: 
本論文係使用溶膠凝膠法製作氧化鋅薄膜晶種層,再以低溫水熱法成長氧化鋅及摻雜銅氧化鋅奈米柱,並調變氧化鋅薄膜晶種層的厚度以及奈米柱的成長時間,藉以比較分析各項成長變數對奈米柱微 結構、光學與電學特性的影響,並將其製程應用於圖樣化藍寶石基板上奈米柱陣列的成長。

本研究藉由x光繞射儀與掃描式電子顯微鏡觀察分析,發現氧化鋅及摻雜銅氧化鋅奈米柱具有(002)方向的優選排向,薄膜結晶性會隨著晶種層的厚度以及奈米柱的成長時間增加而增強,同時銅的摻雜會增加奈米柱的成長速率。藉由螢光光譜發現摻雜銅氧化鋅奈米柱缺陷增加,且缺陷形態由氧空缺變成鋅間隙。再者電性分析結果推得,摻雜銅氧化鋅奈米柱電阻率隨之增加,這是由於銅的摻雜將使氧化鋅奈米柱的缺陷變多,降低載子遷移率,導致電阻率增加。

接著本論文應用圖樣化藍寶石基板,透過稀鹽酸對氧化鋅晶種層不同蝕刻時間的化學濕式蝕刻處理後,再利用水熱法方法於圖樣化藍寶石基板上製備銅摻雜氧化鋅奈米柱陣列。研究結果發現,藉由氧化鋅晶種層表面蝕刻,可藉由調變晶種層分布,有效控制銅摻雜氧化鋅奈米柱陣列的成長密度與分布。
URI: http://hdl.handle.net/11455/3020
其他識別: U0005-0407201313201800
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.