Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3021
標題: 鋁與四氟化碳共摻雜氧化鋅薄膜之特性研究
Study on characteristics of Al and CF4 co-doped zinc oxide thin films
作者: 石妙琪
Shih, Miao-Chi
關鍵字: 氧化鋅;ZnO;四氟化碳;透明導電薄膜;濺鍍;CF4;TCO;sputtering
出版社: 光電工程研究所
引用: [1]Soderstrom, T.; Haug, F.-J.; Niquille, X.; Terrazzoni, V.; Ballif, C.: Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells. Applied Physics Letters 2009, 94, 063501-063501-3. [2]Fay, S.; Kroll, U.; Bucher, C.; Vallat-Sauvain, E.; Shah, A.: Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Solar Energy Materials and Solar Cells 2005, 86, 385-397. [3]Hupkes, J.; Rech, B.; Kluth, O.; Repmann, T.; Zwaygardt, B.; Muller, J.; Drese, R.; Wuttig, M.: Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells. Solar energy materials and solar cells 2006, 90, 3054-3060. [4]Kim, C. J.; Kang, D.; Song, I.; Park, J. C.; Lim, H.; Kim, S.; Lee, E.; Chung, R.; Lee, J. C.; Park, Y.: Highly stable Ga2O3-In2O3-ZnO TFT for active-matrix organic light-emitting diode display application. In Electron Devices Meeting, 2006. IEDM''06. International; IEEE, 2006; pp 1-4. [5]Nakahara, K.; Tamura, K.; Sakai, M.; Nakagawa, D.; Ito, N.; Sonobe, M.; Takasu, H.; Tampo, H.; Fons, P.; Matsubara, K.: Improved external efficiency InGaN-based light-emitting diodes with transparent conductive Ga-doped ZnO as p-electrodes. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS 2004, L 180-L 182. [6]Hsueh, T.-J.; Hsu, C.-L.; Chang, S.-J.; Chen, I.: Laterally grown ZnO nanowire ethanol gas sensors. Sensors and Actuators B: Chemical 2007, 126, 473-477. [7]Ansari, Z.; Karekar, R.; Aiyer, R.: Humidity sensor using planar optical waveguides with claddings of various oxide materials. Thin Solid Films 1997, 305, 330-335. [8]Rim, Y.-S.; Kim, S.-M.; Choi, H.; Kim, K.: Effects of substrate heating and film thickness on the properties of silver based ZnO multilayer thin films. In Microprocesses and Nanotechnology, 2007 Digest of papers; IEEE, 2007; pp 154-155. [9]Wang, F.; Chang, H.; Chao, J.: Improved properties of Ti-doped ZnO thin films by hydrogen plasma treatment. Thin Solid Films 2011, 519, 5178-5182. [10]Chang, H.-P.; Wang, F.-H.; Chao, J.-C.; Huang, C.-C.; Liu, H.-W.: Effects of thickness and annealing on the properties of Ti-doped ZnO films by radio frequency magnetron sputtering. Current Applied Physics 2011, 11, S185-S190. [11]Wang, L.; Meng, L.; Teixeira, V.; Song, S.; Xu, Z.; Xu, X.: Structure and optical properties of ZnO: V thin films with different doping concentrations. Thin Solid Films 2009, 517, 3721-3725. [12]Han, J.; Mantas, P.; Senos, A.: Effect of Al and Mn doping on the electrical conductivity of ZnO. Journal of the European Ceramic Society 2001, 21, 1883-1886. [13]Lin, J.; Zhang, Y.; Ye, Z.; Gu, X.; Pan, X.; Yang, Y.; Lu, J.; He, H.; Zhao, B.: Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition. Applied Surface Science 2009, 255, 6460-6463. [14]Zhang, H.; Lei, C.; Liu, H.; Yuan, C.: Low-temperature deposition of transparent conducting ZnO: Zr films on PET substrates by DC magnetron sputtering. Applied Surface Science 2009, 255, 6054-6056. [15]Lee, H.; Lau, S.; Wang, Y.; Tse, K.; Hng, H.; Tay, B.: Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique. Journal of crystal growth 2004, 268, 596-601. [16]Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P.: Room-temperature ultraviolet nanowire nanolasers. science 2001, 292, 1897-1899. [17]Meyer, B.; Marx, D.: Density-functional study of the structure and stability of ZnO surfaces. Physical Review B 2003, 67, 035403. [18]Hu, J.; Gordon, R. G.: Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells. Solar Cells 1991, 30, 437-450. [19]Ratheesh Kumar, P.; Sudha Kartha, C.; Vijayakumar, K.; Singh, F.; Avasthi, D.: Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films. Materials Science and Engineering: B 2005, 117, 307-312. [20]Maldonado, A.; Tirado-Guerra, S.; de La L Olvera, M.: Chemically sprayed ZnO:(F, Zr) thin films: Effect of starting solution ageing time and substrate temperature on the physical properties. Journal of Physics and Chemistry of Solids 2009, 70, 571-575. [21]Rozati, S.; Moradi, S.; Golshahi, S.; Martins, R.; Fortunato, E.: Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time. Thin Solid Films 2009, 518, 1279-1282. [22]Ilican, S.; Caglar, Y.; Caglar, M.; Yakuphanoglu, F.: Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol–gel process. Applied Surface Science 2008, 255, 2353-2359. [23]Gonzalez-Hernandez, R.; Martinez, A. I.; Falcony, C.; Lopez, A.; Pech-Canul, M.; Hdz-Garcia, H.: Study of the properties of undoped and fluorine doped zinc oxide nanoparticles. Materials Letters 2010, 64, 1493-1495. [24]Xu, H.; Liu, Y.; Mu, R.; Shao, C.; Lu, Y.; Shen, D.; Fan, X.: F-doping effects on electrical and optical properties of ZnO nanocrystalline films. Applied Physics Letters 2005, 86, 123107-123107-3. [25]Cao, L.; Zhu, L.; Jiang, J.; Zhao, R.; Ye, Z.; Zhao, B.: Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition. Solar Energy Materials and Solar Cells 2011, 95, 894-898. [26]Choi, B.; Kim, I.; Kim, D.; Lee, K.; Lee, T.; Cheong, B.; Baik, Y.-J.; Kim, W.: Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter. Journal of the European Ceramic Society 2005, 25, 2161-2165. [27]Ku, D.; Kim, Y.; Lee, K.; Lee, T.; Cheong, B.; Seong, T.-Y.; Kim, W.: Effect of fluorine doping on the properties of ZnO films deposited by radio frequency magnetron sputtering. Journal of electroceramics 2009, 23, 415-421. [28]Tsai, Y.-Z.; Wang, N.-F.; Tsai, C.-L.: Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering. Thin Solid Films 2010, 518, 4955-4959. [29]Ellmer, K.: Resistivity of polycrystalline zinc oxide films: current status and physical limit. Journal of Physics D: Applied Physics 2001, 34, 3097. [30]Pearton, S.; Norton, D.; Ip, K.; Heo, Y.; Steiner, T.: Recent progress in processing and properties of ZnO. Progress in materials science 2005, 50, 293-340. [31]Campbell, S. A.: The science and engineering of microelectronic fabrication; Oxford University Press New York, 1996; Vol. 476. [32]莊達人; 電子工程: VLSI 製造技術; 高立出版, 2003. [33]Thornton, J. A.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology 1974, 11, 666-670. [34]Yoon, H.; Lee, K.; Lee, T.; Cheong, B.; Choi, D.; Kim, D.; Kim, W.: Properties of fluorine doped ZnO thin films deposited by magnetron sputtering. Solar Energy Materials and Solar Cells 2008, 92, 1366-1372. [35]Manos, D. M.; Flamm, D. L.: Plasma Etching: an Introduction.(Retroactive Coverage). Academic Press, Inc.(United States), 1989 1989, 476. [36]Kim, K. H.; Park, K. C.; Ma, D. Y.: Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. Journal of Applied Physics 1997, 81, 7764-7772. [37]Houng, B.; Chen, H. B.: Investigation of AlF< sub> 3</sub> doped ZnO thin films prepared by RF magnetron sputtering. Ceramics International 2012, 38, 801-809. [38]Zhang, Y.-h.; Qi, H.-j.: Composite fluorocarbon/ZnO films prepared by RF magnetron sputtering of Zn and PTFE. Surface and Coatings Technology 2008, 202, 2612-2615. [39]Cullity, B. D.; Stock, S. R.: Elements of X-ray Diffraction; Prentice hall Upper Saddle River, NJ, 2001; Vol. 3. [40]Ting, J.-M.; Tsai, B.: DC reactive sputter deposition of ZnO: Al thin film on glass. materials Chemistry and Physics 2001, 72, 273-277. [41]Wang, A.: Research for Transparent Conducting ITO Thin Films deposited by sputtering method in room temperature. 2007. [42]Kim, Y.; Jeong, J.; Lee, K.; Park, J.; Baik, Y.; Seong, T.-Y.; Kim, W.: Characteristics of ZnO: Al thin films co-doped with hydrogen and fluorine. Applied Surface Science 2010, 256, 5102-5107. [43]Weast, R.: Handbook of Chemistry and Physics 67th, ed. CRC Press, Boca Raton, Florida (1986–1987), 1986. [44]姜辛; 孙超; 洪瑞江; 戴达煌: 透明导电氧化物薄膜. 2008. [45]Das, R.; Jana, T.; Ray, S.: Degradation studies of transparent conducting oxide: a substrate for microcrystalline silicon thin film solar cells. Solar energy materials and solar cells 2005, 86, 207-216. [46]Ohashi, N.; Wang, Y.-G.; Ishigaki, T.; Wada, Y.; Taguchi, H.; Sakaguchi, I.; Ohgaki, T.; Adachi, Y.; Haneda, H.: Lowered stimulated emission threshold of zinc oxide by hydrogen doping with pulsed argon–hydrogen plasma. Journal of Crystal Growth 2007, 306, 316-320. [47]Look, D. C.; Jones, R.; Sizelove, J.; Garces, N. Y.; Giles, N. C.; Halliburton, L. E.: The path to ZnO devices: donor and acceptor dynamics. physica status solidi (a) 2003, 195, 171-177. [48]Kurtz, M.; Strunk, J.; Hinrichsen, O.; Muhler, M.; Fink, K.; Meyer, B.; Woll, C.: Active Sites on Oxide Surfaces: ZnO‐Catalyzed Synthesis of Methanol from CO and H2. Angewandte Chemie International Edition 2005, 44, 2790-2794. [49]Oh, B.-Y.; Jeong, M.-C.; Myoung, J.-M.: Stabilization in electrical characteristics of hydrogen-annealed ZnO: Al films. Applied surface science 2007, 253, 7157-7161. [50]Mayer, R.; Smith, E.: The Artist''s Hanbook: Of Materials and Techniques; Faber & Faber, 1973. [51]Neamen, D. A.: An introduction to semiconductor devices; McGraw-hill New York, 2006.
摘要: 
本研究使用射頻磁控濺鍍法在氬氣與四氟化碳(CF4)氣氛下沉積氧化鋅共摻雜鋁與氟(AFZO)薄膜於康寧Eagle XG玻璃。以改變鋁含量與四氟化碳流量的方式來探討濺鍍參數對AFZO薄膜結構、表面形貌、組成成分與光電特性的影響,並且討論AFZO薄膜經氫氬電漿後處理所造成的特性改善。最後再以稀鹽酸(HCl)蝕刻薄膜表面,觀察其對表面形貌與光電特性之影響。
分別使用四種含不同Al2O3比例(0 wt%、1 wt%、2 wt%與4 wt%)的氧化鋅靶材,四個靶材簡稱為A0ZO、A1ZO、A2ZO與A4ZO,各靶材所沉積之AFZO薄膜分別簡述為A0FZO、A1FZO、A2FZO與A4FZO,CF4流量變化為0% – 0.5%。以射頻功率100 W、基板不加熱、背景壓力5 × 10-6 Torr、工作壓力5 mTorr與薄膜厚度330 ± 30 nm的條件下沉積AFZO薄膜,A0FZO薄膜隨著CF4流量的增加,電阻率也會隨之下降,在CF4摻雜0.1%時,有最佳值2.24 × 10-3 Ω-cm,而A1FZO、A2FZO與A4FZO三系列薄膜在摻雜了CF4之後,電性都會隨著CF4摻雜比例的增加而下降,最佳光電特性表現為未摻雜CF4之A1FZO薄膜,其電阻率為8.74 × 10-4 Ω-cm,可見光平均穿透率約為93%。再以氫氬電漿(H2:Ar = 1:1)後處理改善薄膜光電特性,條件為電漿功率50 W、基板溫度200˚ C、工作壓力1 Torr,AFZO薄膜經氫氬電漿處理電性均獲得改善,電性愈差的改善程度愈大,最佳光電特性表現的薄膜其電阻率由8.74 × 10-4 Ω-cm降至8.60 × 10-4 Ω-cm,可見光平均穿透率從93%提升至94%。
在稀鹽酸蝕刻部份,使用0.2%的稀鹽酸對AFZO薄膜表面進行蝕刻,薄膜經蝕刻後電阻率有略微上升的趨勢,且薄膜表面變得較粗糙且有明顯的隕石坑形狀,A2FZO薄膜經稀鹽酸蝕刻後,其在可見光區的平均霧度(haze ratio)從1.51%增加至36.85%,未摻雜CF4之A1FZO薄膜應用於矽薄膜太陽能電池轉換效最佳。

Aluminum and fluorine co-doped ZnO (AFZO) films were prepared by ratio frequency (rf) magnetron sputtering with ZnO targets containing 0 wt.%, 1 wt.%, 2 wt.% and 4 wt.% Al2O3 on Corning EagleXG glass at room temperature in Ar/CF4 gas mixtures. The surface morphology, structure, compositional, electrical and optical properties of the as-deposited films as well as the hydrogen-argon plasma treatment ones were investigated.
The electrical and optical parameters (resistivity, carrier concentration, Hall mobility) were correlated with the chemical composition and the structural properties (phases, grain size). For A0FZO films, CF4 incorporation of 0.1%~0.5% concentrations increases the carrier concentration and the Hall mobility. Higher carbon and fluorine incorporation into the films do not improve the electrical properties, which is attributed to the formation of carbide and zinc fluorides. For A1FZO, A2FZO, and A4FZO films, the resistivity increase with increasing CF4 content. Among them, the as-deposited A1FZO films achieved the lowest resistivity of about 8.74 × 10-4 Ω•cm.
The effects of hydrogen plasma treatment on AFZO films were investiged. The lowest resistivity was achieved under the conditions of RF power of 50 W, substrate temperature of 200˚ C, and working pressure of 1 Torr. After plasma treatement, the film resistivity decrease from 8.74 × 10-4 Ω•cm to 8.6 × 10-4 Ω•cm and the average optical transmittance increase from 93% to 94%.
For diluted HCl etched films, the resistivity slightly increased and the surface morphology obviously became rougher. The average haze ratio (400-700 nm) of the etched AFZO films increased from 1.51% to 36.85% after 0.2% diluted HCl etching. The fabricated amorphous Si thin film solar cell with undoped A1FZO film as the front electrode has the best efficiency.
URI: http://hdl.handle.net/11455/3021
其他識別: U0005-2608201314380500
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.