Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYang, Yu-Jheen_US
dc.identifier.citation[1] Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6(3):183-91. [2] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306(5696):666-9. [3] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006;312(5777):119-6. [4] Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009;324(5932):1312-4. [5] Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Advanced materials 2010;22(22):2392-415. [6] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 2008;3(5):270-4. [7] Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B 1998;102:4477-4482. [8] Cote LJ, Kim F, Huang J. Langmuir−Blodgett assembly of graphite oxide single layers. Am Chem Soc 2009;131:1043. [9] 黃嘉興等人,「舊材料的新見解-氧化石墨烯之界面活性」。工業材料雜誌 2011;291. [10] Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M. Insulator to semimetal transition in graphene oxide. J Phys Chem C 2009;113:15768. [11] Jin M, Jeong H-K, Yu WJ, Bae DJ, Kang BR, Lee YH. Graphene oxide thin film field effect transistors without reduction. Journal of Physics D:Applied Physics 2009;42(13):135109. [12] Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano letters 2007;7(11):3499-3503. [13] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007;45(7):1558-65. [14] Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature 2006;442(7100):282-6. [15] Chen WF, Yan LF. Preparation of graphene by a low temperature thermal reduction at atmosphere pressure. Nanoscale 2010;2(4):559-63. [16] Chen WF, Yan LF, Bangal PR. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J Phys Chem C 2010;114(47):19885-90. [17] Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010;48(15):4466-74. [18] Lee SW, Mattevi C, Chhowalla M, Sankaran RM. Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications. The Journal of Physical Chemistry Letters 2012;3(6):772-7. [19] Eda G, Nathan A, Wobkenberg P, Colleaux F, Ghaffarzadeh K, Anthopoulos TD, et al. Graphene oxide gate dielectric for graphene-based monolithic field effect transistors. Applied Physics Letters 2013;102(13):133108. [20] Kang H, Kulkarni A, Stankovich S, Ruoff RS, Baik S. Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques. Carbon 2009;47(6):1520-5. [21] Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2010;2(12):1015-1024. [22] Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958;80(6):1339. [23] Brodie BC. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859;149(0):249-59. [24] Staudenmaier L.Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges 1898;31:1481-1487. [25] Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009;458(7240):872-6. [26] Acik M, Chabal YJ. A Review on Reducing Graphene Oxide for Band Gap Engineering. Journal of Materials Science Research 2012;2(1). [27] Huang H, Li Z, She J, Wang W. Oxygen density dependent band gap of reduced graphene oxide. Journal of Applied Physics 2012;111(5):054317. [28] Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, et al. Controlled, stepwise reduction and band gap manipulation of Graphene oxide. The Journal of Physical Chemistry Letters 2012;3(8):986-91. [29] Baraket M, Walton SG, Wei Z, Lock EH, Robinson JT, Sheehan P. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon 2010;48(12):3382-90. [30] Cheng M, Yang R, Zhang L, Shi Z, Yang W, Wang D, et al. Restoration of graphene from graphene oxide by defect repair. Carbon 2012;50(7):2581-7. [31] Long DA. Raman Spectroscopy. McGraw-Hill 1977. [32] 王帥,「利用同步輻射軟X光還原氧化石墨烯」,私立東海大學,2007。 [33] Powell CJ, Jablonski A. Electron effective attenuation lengths for applications in Auger electron spectroscopy and x-ray photoelectron spectroscopy. Surface and Interface Analysis 2002;33(3):211-29. [34] Gunter PLJ, Gijzeman OLJ, Niemantsverdriet JW. Surface roughness effects in quantitative XPS: magic angle for determining overlayer thickness. Applied Surface Science 1997;115:342-346. [35] 張家豪等人,「電漿源原理與應用之介紹」物理雙月刊 2006;452. [36] 連水養,「電漿的基礎原理、製程與應用」 [37] Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis and exfoliation of isocyanate - treated graphene oxide nanoplatelets. Carbon 2006;44(15):3342-7. [38] Wang G, Wang B, Park J, Yang J, Shen X, Yao J. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 2009;47(1):68-72. [39] Chandra S, Sahu S, Pramanik P. A novel synthesis of graphene by dichromate oxidation. Materials Science and Engineering: B 2010;167(3):133-6. [40] Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 2000;61(20):14095-107. [41] Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical chemistry chemical physics 2007;9(11):1276-91. [42] Tauc J, Grigorovici R, Vancu A. Optical properties and Electronic structure of amorphous germanium. Phys Status Solidi 1996;15:627-637.en_US
dc.description.abstract近年來,由於石墨烯具有獨特的二維結構及擁有良好的導電率與導熱率,受到相當大的關注,故研究越來越廣泛,而氧化石墨烯(GO)及其還原態(r-GO)具有可調控之表面化性、電性與光學性質,近期來也受到很大的關注,故學者研究的還原方式也越來越多種,但還原大都伴隨著缺陷產生,研究中指出CH4電漿可以使缺陷修復並還原氧化石墨烯,故我們研究電漿還原氧化石墨烯並促使缺陷降低,利用H2、CH4、H2+CH4 3種不同氣體電漿環境在不同條件下來還原氧化石墨烯,並比較之間的光學與電性的不同。 我們利用電漿輔助化學氣相沉積(PECVD)來做為電漿處理方式來還原氧化石墨烯,並使用FTIR、XPS確認其官能基、Raman分析得知其分子結構,並利用此2種分析比較3種氣體電漿還原程度的不同,又以H2+CH4電漿處理在改變處理時間的條件下還原程度較為顯著,故對此探討了還原前後的穿透率與能帶的關係,UPS得知能帶結構圖,與還原後的電性改變及照光前後的量測變化,可發現電漿處理時間越長,還原程度會提高且電導率也會上升,照光下量測則發現受紫外光照射的情形下,電流會在低電壓時顯著地下降。zh_TW
dc.description.abstractIn recent years, graphene is a unique two-dimensional structure with good electrical conductivity and thermal conductivity. However graphene oxide has attracted considerable attention because it has tunable surface chemical properties, electrical and optical properties. Many reduction approaches have been developed and most of reduction processes have abundant defects. In study, CH4 plasma treatment could reduce the graphene oxide and help defects repair. So we studied plasma reduction and decreased defects at the same time by the three kinds of the gas plasma such as H2, CH4 and H2+CH4 and compared their electrical and optical properties. Here we used plasma to reduce graphene oxide by PECVD. FTIR and XPS are used to know functional groups of graphene oxide, Raman is used to know molecular structure of graphene oxide and the two analysis methods can be used to know reduction level. In this thesis, we know H2+CH4 plasma treatment to reduce graphene oxide is outstanding, so we studied the relationship of transmittance and energy band gap, electrical properties, and the difference of exposure before and after reduction. We discover reduction level advance with the plasma treatment time increasing, so conductivity is increasing, too. Then, the samples were exposed by different light. Especially exposure to UV light, the measure results prove the current is apparent decreasing at low voltage.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 簡介 1 1.1.1 石墨烯與氧化石墨烯(Graphene Oxide, GO)的介紹 1 1.1.2 氧化石墨烯的化學結構與材料特性 2 1.1.3 還原氧化石墨烯(reduced graphene oxide, rGO)的介紹 3 1.1.4 氧化石墨烯的製備方法 5 1.2 文獻回顧 10 1.2.1 碳氧比例與能帶關係 10 1.2.2 電子束電漿(Ar/CH4混和氣體)還原氧化石墨烯 11 1.2.3 電漿還原氧化石墨烯(H2 or CH4) 14 1.3 研究動機 20 第二章 儀器原理與介紹 21 2.1 拉曼光譜(Raman Spectrum)21 2.2 X-射線光電子能譜(X-ray Photoelectron Spectroscopy) 23 2.3 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy) 25 2.4 紫外光可見光光譜儀(UV-VIS Spectrometer ) 26 2.5 電漿增強式化學氣相沉積(Plasma-Enhanced Chemical Vapor Deposition) 27 2.6 薄膜測厚儀(Alpha-Step) 28 2.7 熱蒸鍍機(Thermal Evaporation Coater) 28 第三章 樣品制備與實驗方法 29 3.1 還原石墨烯氧化物的製作流程 29 3.2 基板清洗程序 30 3.3 氧化石墨烯溶液的準備 31 3.4 如何形成薄膜 33 3.5 電漿處理製程與參數 35 3.6 電極製備 39 3.7 量測儀器 41 第四章 實驗結果分析與討論 42 4.1 傅立葉轉換紅外線頻譜結果與分析 42 4.2 X-射線光電子能譜結果與分析 47 4.3 拉曼光譜結果與分析 48 4.4 能帶分析 52 4.5 紫外光光電子能譜結果與分析 58 4.6 電性分析 59 4.7 照光量測分析 65 第五章 結論 74 參考文獻 75zh_TW
dc.subjectgraphene oxideen_US
dc.subjectenergy gapen_US
dc.titleElectrical and Optical Properties of Plasma Reduced Graphene Oxideen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:光電工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.