Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3025
標題: 非晶矽薄膜與氧化鋁薄膜對單晶矽基板雙層鈍化之研究
The Study of Double Layer (a-Si:H/Al2O3)Passivation On Crystalline Silicon Wafer
作者: 賴彥名
Lai, Yen-Ming
關鍵字: 鈍化;passivation;退火;載子生命週期;非晶矽;氧化鋁;anneal;lifetime;a-Si;Al2O3
出版社: 光電工程研究所
引用: [1] 陳宏仁、王立義、邱文英,”有機太陽能電池之發展現況”,工業材料雜誌192期 [2] 楊昌中,”能源領域中的奈米科技研究”,工業研究院-能源與環境 研究所,中華民國95年12月26日 [3] Lawrence Kazmerski, Don Gwinner, Al Hicks (2007) [4] Dr. Richard Swanson National Renewable Energy Laboratory NREL (2008), and SVC (2009) [5] W. Fiissel et al. ” Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress”, Nuclear Instruments and Methods in Physics Research 177 ,183 (1996) [6] J. Schmidt et al. ” Surface Passivation of High-efficiency Silicon Solar Cells by Atomic-layer-deposited Al2O3”, Prog. Photovolt: Res. Appl. 16 ,461 (2008) [7] M. J. Chen et al.“ Enhancement in the Efficiency of Light Emission from Silicon by a Thin Al2O3 Surface-Passivating Layer Grown by Atomic Layer Deposition at Low Temperature”, Journal of Applied Physics 101, 033130 (2007) [8] V. Yelundur et al.” PECVD SiNx Induced Hydrogen Passivation in String Ribbon Silicon”, Photovoltaic Specialists Conference (2000). [9] M. Jeon et al. “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique” Current Applied Physics 10, 237 (2010) [10] J. Mitchell et al. “PLASMA-ENHANCED CHEMICAL VAPOUR DEPOSITION OF A-SI:H TO PROVIDE SURFACE PASSIVATION OF C-SI SURFACES AT LOW TEMPERATURE” [11] A. Focsa, et al. “Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H” Materials Science and Engineering B 159 , 242 (2009) [12] O.Astakhov et al. ”Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon” PHYSICAL REVIEW B 79, 104205 (2009) [13] J. Schmidt et al.” Progress in the Surface Passivation of Silicon Solar Cells”, 23rd European Photovoltaic Solar Energy Conference (2008) [14] Myoung Yone Seo et al.” Characterization of Al2O3 Films grown by Electron Beam Evaporator on Si Substrates ” Nanoelectronics Conference (INEC), 2010 3rd International ,238 (2010) [15] B. Hoex et al. “Excellent Passivation of Highly Doped p-type Si Surfaces by the Negative-Charge-Dielectric Al2O3”, Applied Physics 91 , 112107 (2007) [16] J. Benick et al. ” Effect of a Post-Deposition Anneal on Al2O3/Si Interface Properties ”, Photovoltaic Specialists Conference (2010) [17] G. Dingemans et al. ”Firing Stability of Atomic Layer Deposited Al2O3 for C-Si Surface Passivation”, Photovoltaic Specialists Conference (2009) [18] 黃建中 et al. ”Influence of a-SiHdeposition temperature on thermal stability of a-SiHSiNxH stacks” photovoltaics international 季刊 [19] S. Gatz et al. ”THERMALLY STABLE SURFACE PASSIVATION BY A-SI:H / SIN DOUBLE LAYERS FOR CRYSTALLINE SILICON SOLAR CELLS” [20] J.SRITHARATHIKHUN et al. ”Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics 46, 3296(2007) [21] 黃惠良等人 ”太陽能電池” ,五南出版社(2009) [22] 楊德仁,”太陽電池材料”,五南文化 (2008) [23] G. Dingemans et al.” Recent Progress in the Development and Understanding of Silicon Surface Passivation by Aluminum Oxide Photovoltaics”,25th Solar Energy Conference (2010) [24] 楊德仁等著,”半導體材料測試與分析”,北京科學出版社(2010) [25] Wim Soppe et al. “Bulk and Surface Passivation of Silicon Solar Cells Accomplished by Silicon Nitride Deposited on Industrial Scale by Microwave PECVD” PROGRESS IN PHOTOVOLTAICS 13,551 (2005) [26] http://wenku.baidu.com/view/9ee70505bed5b9f3f80f1c06.html, WT-2000使用說明 [27] 林明獻編著,”矽晶圓半導體材料技術” ,全華圖書 (2007) [28] 汪建民,”材料分析”,中國材料科學學會. [29] http://elearning.stut.edu.tw/caster/3/no7/7-3.htm [30] H. Ma ckel et al. “Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation”, JOURNAL OF APPLIED PHYSICS 5, 2602 (2002) [31]M. Hofmann et al. “Stack System of PECVD Amorphous Silicon and PECVD Silicon Oxide for Silicon Solar Cell Rear Side Passivation” PROGRESS IN PHOTOVOLTAICS 16,509 (2008) [32] K.Koyama et al. “Excellent passivation effect of Cat-CVD SiNx/i-a-Si stack films on Si substrates” Thin Solid Films 519 ,4473 (2011) [33] O.Vetter et al. “Intrinsic microcrystalline silicon : A new material for photovoltaics” , Solar Energy Materials & Solar Cells 62 ,97 (2000) [34] M. Jeon et al. “Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells” TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS 10 ,75 (2009) [35] M. Jeon et al. “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique” Current Applied Physics 10 ,237 (2010) [36] A. Focsa et al. “Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H” Materials Science and Engineering B 159 ,242 (2009) [37] J. Mitchell et al. “Thermally Activated Surface Passivation of a-Si:H/c-Si Interfaces with Annealing” Solar06 – ANZSES 2006 [38] J. Mitchell et al. “PLASMA-ENHANCED CHEMICAL VAPOUR DEPOSITION OF A-SI:H TO PROVIDE SURFACE PASSIVATION OF C-SI SURFACES AT LOW TEMPERATURE” [39]http://ssttpro.acesuppliers.com/semiconductor_news/hi_tech_enews_NewsId_581.html [40] http://wenku.baidu.com/view/b723df4bc850ad02de804181.html [41] Chien-Hui Liu ” The Study of Atomic Layer Deposition Aluminum Oxide Passivation Effect on Crystalline Silicon Wafer” National chung hsing university
摘要: 
本論文是研究可應用於HIT太陽能電池的雙層鈍化結構(氧化鋁及非晶矽薄膜),實驗使用品質較差的p-type雙拋單晶矽晶圓(生命週期約10 μs左右),結果分下列兩部分探討。

第一部分為找出最佳鈍化效果的非晶矽薄膜製作參數。用電漿輔助化學氣相沉積系統沉積非晶矽薄膜,改變不同氫稀釋比,不同的薄膜厚度,不同的退火溫度和不同的退火形式,探討非晶矽薄膜內部的氫原子鍵結變化對鈍化的影響。實驗使用最佳的製程參數,沉積厚度20 nm的非晶矽薄膜,在退火溫度250~300℃下,會呈現最好的效果,載子生命週期約從10 μs提升至55 μs左右。

第二部分是在最佳化的非晶矽薄膜上沉積氧化鋁薄膜,利用其場效鈍化製作雙層鈍化層。使用原子沉積系統沉積單層厚度20 nm的氧化鋁薄膜,經傳統爐管退火400~500℃載子生命週期達到最高值,有10倍顯著的提升。而氧化鋁薄膜加上非晶矽薄膜雙層鈍化結構,在400~500℃載子生命週期沒有顯著的提升,是因為非晶矽薄膜厚度太厚,弱化了氧化鋁薄膜負電場的寬度,場效鈍化的效果消失,所觀察到的雙層鈍化效果還是來自於非晶矽薄膜的表面鈍化。

Silicon is the most widely used material in photovoltaic (PV) industries for making solar panels that convert solar energy into electricity. As the wafer thickness reduction, the surface passivation technique becomes more important because surface defects dominate the minority carrier recombination rate and the solar cell efficiency.

In this thesis study, the Surface of Silicon was passivated by Al2O3 and amorphous silicon. as the bi-layer, it was expected that hydrogen bonding reduce interface states and negative field effect which yields maximum Passivation. The silicon used in this research is P-type double side polished Czochralski wafers with lifetime of around 10 μs. The experimental results can be separated into two parts :

The first part, by optimizing the thickness of amorphous Si layer (20 nm) and annealing condition (annealed at 250~300℃ 30 min. in N2), the minority carrier lifetime single crystalline wafer could be improved from 10 μs to 55 μs.

The second part, the 20 nm Al2O3 film deposited onto 10~20 nm amorphous silicon to form bi-layer and annealed around 400℃ to 500℃. Carrier lifetime of silicon wafer was not observed to have significant improve. We believed that the 20 nm amorphous silicon passivation is too thick to limit the effect of field passivation .
URI: http://hdl.handle.net/11455/3025
其他識別: U0005-1207201217520400
Appears in Collections:光電工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.