Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3032
標題: 三聚氰胺聚磷酸鹽/蒙脫土/尼龍6奈米複合材料製備與物性分析
Preparation and Physical Properties of Melamine Polyphosphate/Montmorillonite/Nylon 6 Nanocomposites
作者: 吳博軒
Wu, Po-Shuan
關鍵字: 三聚氰胺;melamine;磷酸;尼龍6;蒙脫土;phosphoric acid;melamine polyphosphate;nylon 6
出版社: 化學工程學系所
引用: 六、参考文獻 1.馬振基、趙玨 “高分子複合材料”, 上冊, 第3頁至第15頁 (1995), 台北市, 初版; 下冊, 第3頁至第14頁, 正中出版社 (2006) 2.周永隆, 陳瑞鑫, “難燃材料的發展趨勢與應用”, 化工資訊與商 情,工研院材料與化工所 (2008) 3.歐育湘,“阻燃劑的製造與性能應用”, 第2頁至3頁, 化學工業出 版社, 北京市 (2002) 4.C. S. Zhao, F. L. Huang, W. C. Xiong, Y.Z. Wang, Polymer Degradation and Stability, 93, 1188 (2008) 5.孫逸民, 謝正悅, 王春山,“非鹵素難燃劑之研究”, 第四十八 卷, 第23頁至第35頁, 第1期, 國防工業出版社 (2001) 6.H. Wang, Q. Wang, Z. Huang, W. Shi, Polymer Degradation and Stability, 92, 1788. (2007) 7.王富才,“高分子工業雜誌”, 第五十一卷, 第39頁至第46頁, 國 防工業出版社 (1994) 8.H. Y. Ma, L. F. Tong, Z. B. Xu, Z. P. Fang, Polymer Degradation and Stability, 92, 720 (2007) 9.陳光榮, 黃素珍,“化工資訊”, 第七卷, 第24頁至第37頁,第十二 期 (1993) 10.L. Chen, Y.Z. Wang, Advanced Polymer Technology, 21, 1– 26 (2010) 11.M. Banks, J. R. Ebdon, M. Johnson, Polymer, 35, 3470 (1994) 12.D. Y. Wang, Y. Liu, X. G. Ge, Y. Z. Wang, A. Stec, B. Biswas, T. R. Hull, D. Price, Polymer Degradation and Stability, 93, 1024 (2008) 13.黃振隆, 葉芳耀, 陳玟溢, 林美秀,“工業材料雜誌”, 第 134 頁至第140頁, 第224期, 化學工業出版社, 新竹市 (2005) 14.B. Li, H. Mao, X. Li, W. Ma, Z. Liu, Journal of Colloid and Interface Science, 336, 244–249 (2010) 15.L. Wei, T. Tang, B. Huang, Microporous and Mesoporous Materials, 67, 175-179 (2004) 16.J. P. Kiliaris, C. D. Papaspyrides, R. Pfaendner, Macromolecular Materials and Engineering, 97, 296 (2011) 17.Q. Wang, Y. Chen, Y. Liu, H. Yin, N. Aelmans, R. Kierkels, Polymer International, 53, 439–448 (2004) 18.Y. Chen, Qi. Wang, Advanced Polymer Technology, 18, 587– 600 (2007) 19.Z. Wang, P. Lv, Y. Hu, K. Hu, Journal of Analytical and Applied Pyrolysis, 86, 207–214 (2009) 20.S. Jahromi, W. Gabrielse, A. Braam, Journal of Applied Polymer Science, 104, 44-51 (2003) 21.B. Cichy, D. Luczkowska, M. Nowak, M. Władyka- Przybylak, Industrial Engineering and Chemistry Research, 42, 2897-2905 (2003) 22.V. Brodski, R. Peschar, H. Schenk, A. Brinkmann, E. R. H. Eck, A. P. M. Kentgens, B. Coussens, A. Braam, Joural of Physical Chemistry B, 108, 15069-15076 (2004) 23.V. Brodski, R. Peschar, H. Schenk, Joural of Physical Chemistry B, 109, 13529-13537 (2005) 24.Y. Chen, Q. Wang, Polymer Degradation and Stability, 91, 2003-2013 (2006) 25.Z. Y. Wang, Z. Q. Feng, Y. Liu, Q. Wang, Journal of Applied Polymer Science, 105, 3317–3322 (2007) 26.U. Braun, B. Schartel, M. A. Fichera, C. Jager, Polymer Degradation and Stability, 92, 1528-1545 (2007) 27.C. Nyambo, E. Kandare, C. A. Wilkie, Polymer Degradation and Stability, 94, 513–520 (2009) 28.Y. Liu, J. Li, Q. Wang, Journal of Applied Polymer Science, 113, 2046–2051 (2009) 29.Y. Zhang, Y. Liu, Q. Wang, Journal of Applied Polymer Science, 116, 45–49 (2010) 30.G. Liu, W. Chen, J. Yu, Industrial Engineering Chemistry Research, 49, 12148–12155 (2010) 31.M. Thirumal, D. Khastgir, G. B. Nando, Y. P. Naik, N. K. Singha, Polymer Degradation and Stability, 95, 1138-1145 (2010) 32.T. Orhan, N. A. Isitman, J. Hacaloglu, C. Kaynak, Polymer Degradation and Stability, 94, 1-8 (2011) 33.G. Wang, J. Yang, Progress in Organic Coatings , 91, 511–517 (2011) 34.G. Huanga, H. Lianga, Y. Wanga, X. Wangb, J. Gaob, Z. Fei, Materials Chemistry and Physics, 132, 520– 528 (2012) 35.X. Fu, S. Qutubuddin, Polymer, 42, 807–813 (2001) 36.C. R. Tseng, J. Y. Wu, H. Y. Lee, F. C. Chang, Journal of Applied Polymer Science, 85, 1370–1377 (2002) 37.T. Nakao, M. Nogami, Materials Letters, 59, 3221-3225 (2005) 38.P. Uthirakumar, M. Ki. Song, C. Nah, Y. S. Lee, European Polymer Journal, 41, 211–217 (2005) 39.M. C. Lai, G. W. Jang, K. C. Chang, S. C. Hsu, M. F. Hsieh, J. M. Yeh, Journal of Applied Polymer Science, 109, 1730–1737 (2008) 40.B. Li, H. Mao, X. Li, W. Ma, Z. Liu, Journal of Colloid and Interface Science, 336, 244–249 (2010) 41.T. Kashiwagi, H. Jr, R. H. Zhang, X. Briber, R. M. Cipriano, B. H. Raghavan, S. R. Awad, W. H. Shields, Polymer, 45, 881-891 (2004) 42.X. Hao, G. Gai, J. Liu, Y. Yang, Y. Zhang, C. Nan, Materials Chemistry and Physics, 96, 34-41 (2006) 43.Y. Chen, Q. Wang, Polymer Degradation and Stability, 91, 2003 (2006) 44.P. Kiliarisa, C. D. Papaspyridesa, R. Xalterb, R. Pfaendner, Polymer Degradation and Stability, 97, 1215– 1222 (2012) 45.J. G. Kersjes, H. M. Renier , US Patent 6, 369, 137 B2 (2002) 46.V. Thewes, D. E. Monheim, W. D. Pirig, D. E. Euskirchen, US Patent 6, 642, 284 (2003) 47.R. V. Kasowski, P. A. West- Chester, M. M. Kasowski, US Patent 7, 138, 443 (2006) 48.H. Dieter-Naegerl, D. E. Dudenhofen, T. Futterer, D. E. Ingelheim, V. M. Fibla, E. S. Badalona, D. G. Martinez, E. S. Saragossa, E. T. Gimeno, E.S. Barcelona, US Patent 7, 649, 038 (2010) 49.K. Gotzmann, D. E. Budenheim, L. Gotzmann, US Patent 7, 893, 142 (2011) 50.游瑞成,“有機光譜學”, 第153至154頁, 徐氏基金會出版, 台北 市 (1984) 51.劉威毅, “UV硬化丙烯酸酯與蒙脫土奈米複合材料之製備與物性 分析”, 中興大學化學工程研究所論文 (2011) 52.R. J. Varley, A. M. Groth, K. H. Leong, Composites Science and Technology, 68, 2882-2891 (2008) 53.林文義, “聚醯胺/無鹵耐燃劑/無機物奈米複合材料之製備與物 性分析”, 中興大學化學工程研究所論文 (2009) 54.J. W. Cho, D. R. Paul, Polymer, 42, 1083-1094 (2001) 55.S. Mohany, S. K. Nayak, Polymer Composites, 28, 153-162 (2007) 56.C. P. Fenimore, F. J. Martin, Modern Plastic, 44, 141- 148 (1996) 57.F. Laoutid, L. Bonnaud, M. Alexandre, J. M. Lopez- Cuesta, P. Dubois, Materials Science and Engineering, 63, 100-125 (2009)
摘要: 
本論文合成製備三聚氰胺-聚磷酸鹽MPP(Melamine Polyphosphate) 作為層狀蒙脫土改質劑,乃利用蒙脫土在水中分散之後表面帶有負電荷特性,使MPP與蒙脫土以化學反應結合,製備出MPP/Clay改質蒙脫土。將此MPP/Clay改質蒙脫土透過熔融混煉分散於尼龍6系統中形成奈米複合材料,並探討此複材之熱性質與耐燃性。
透過三聚氰胺與磷酸結合,形成三聚氰胺磷酸鹽MP(Melamine Phosphate),其在酸性環境下,表面胺基帶有正電,能作為合成MPP以及製備MPP/Clay改質蒙脫土前驅物。經由300 ℃高溫處理,使得MP分子之間彼此脫水聚合而生成MPP,由FT-IR分析,MPP可以發現在3133.8 cm-1與2843.7 cm-1為NH3+官能基特徵峰,OH官能基之特徵峰則出現在2696.7 cm-1的位置。而1385.4 cm-1則是為Melamine結構上C-N之振動吸收峰,1282.12 cm-1與1178.8 cm-1為P=O雙鍵之特徵峰。P-OH上之P-O單鍵之振動吸收峰為970.2 cm-1,888.7 cm-1則為P-O-P鍵之振動吸收峰。由此表示成功合成MPP。
MPP/Clay改質蒙脫土之製備則透過三聚氰胺之酸化,使之吸附在蒙脫土表面上,加入磷酸使蒙脫土表面先形成少許MP,之後再添加MP溶液,使得更多MP能有效吸附蒙脫土進而撐開其層間距。XRD分析顯示,此MP/Clay在 1.5 °~8 °之間,並無繞射峰吸收。之後經由高溫聚合形成MPP/Clay改質蒙脫土。由FE-SEM分析,可看出蒙脫土上吸附尺寸小於100 nm之MPP粒子。
而在MPP/Clay改質蒙脫土/尼龍6複材中。由DSC分析,複材中改質蒙脫土並不影響尼龍高分子的熔點改變。而在第一次降溫中發現複材的結晶溫度均提前發生,顯示添加了改質蒙脫土有異相成核作用。TGA分析結果顯示,導入含量為30 wt%改質蒙脫土之尼龍6複合材料,有效提昇其800 ℃時殘餘量達至19.53 wt%。極限氧指數LOI,亦由25.3提昇至37.4,顯示添加MPP/Clay改質蒙脫土能有較佳的難燃特性。而在FESEM分析中可以觀察到MPP/Clay改質蒙脫土/尼龍6複材燃燒後表面碳焦層結構緊密,因此能防止內層高分子繼續燃燒而達到耐燃的目的。

In this study, melamine polyphosphate (MPP) was prepared and served as Clay modifier. The montmorillonite (MMT) with the characteristics of negative surface charge was modified by MPP via chemical reactions in the aqueous solution. The modified montmorillonite (MPP/Clay) was further introduced to Nylon 6 matrix by melt blending method. Thermal properties and flame retardant properties of (MPP/Clay)/Nylon 6 nanocomposites were studied.
The synthesis of MPP was performed by the combination of melamine with phosphoric acid. Melamine phosphate (MP) was first prepared with positive charge in surface that can serve as the modified Clay precursor. After 300 ℃ thermal treatment, the MP molecules went through dehydration polymerization to generate MPP. Fourier transform infrared spectroscopy (FT-IR) indicated melamine polyphosphate wereobserved at 3133.8 cm-1 and 2843.7 cm-1 assigned to the vibration absorption of -NH3+, 2696.7 cm-1assigned to the vibration absorption of O-H groups, 1385.4 cm-1 assigned to the vibration of C-N groups of the triazine rings, 1282.12 cm-1 and 1178.8cm-1 assigned to the vibration of P=O bonds, 970.2cm-1 assigned to the vibration absorptions of P-O in P-O-H groups, and 888.7 cm-1 assigned to the vibration of P-O-P bonds.
The modified montmorillonite (MPP/Clay) was prepared via melamine acidification and adsorb on the MMT surface firstly. Next, phosphoric acid was added to generate MP on the Clay surface. It was observed that the increase of MP concentration could further increase the platelet distance to the extent of featureless XRD pattern (none of peaks). The generated MPP particles with diameter less than 100 nm immobilized on the MMT surface was observed by field emission scanning electronic microscopy (FE-SEM).
After melt blending, the (MPP/Clay)/Nylon 6 nanocomposites were prepared. Differential scanning calorimetry (DSC) results indicated that modified MMT does not affect the melting point of the polymer matrix. Found that the crystallization temperature of the composites occurred early in the first cooling, add modified montmorillonite has heterogeneous nucleation. Thermogravimetric analysis (TGA) showed that the incorporation of modified MMT (30 wt%) significantly enhanced the residue to 19.53 wt% at 800 ℃. Furthermore, LOI (limiting oxygen index) value increases from 25.3 to 37.4 indicating that (MPP/Clay)/Nylon 6 nanocomposites possess excellent flame retardant properties. FESEM analysis can be observed that the post-combustion of the (MPP/Clay)/Nylon 6 nanocomposites forms compact coke layer structure, thus prevents the inner polymer burning further to achieve the derived flame retardant purpose.
URI: http://hdl.handle.net/11455/3032
其他識別: U0005-0502201310431800
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.