Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3037
標題: 二氧化錳-聚吡咯複合材料之形貌變化於超電容之電化學性質影響
Effect of MnO2-PPy Composites with different Morphology on Electrochemical Properties for Supercapacitor
作者: 黃熙凱
Huang, Hsi-Kai
關鍵字: 聚吡咯;Manganese dioxide;電化學電容器;循環伏安法;Polypyrrole;Electrochemical Capacitor;Cyclic Voltammetry
出版社: 化學工程學系所
引用: [1] R.Kotz and M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, 45 (2000) 2483. [2] 洪為民,“鋰離子二次電池原理、特性與應用 ”,小型二次電 池市場與技術專輯,工業材料系列叢書,7(1996)58-63. [3] E. Conway, Electrochemical Super capacitors, Kluwer-Plenum, New York (1999). [4] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources, 91(2000)37. [5] B. E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage, J. Electrochem. Soc., 138 (1991) 1539. [6] I. D. Raistrick, Electrochemistry in Electronics, Noyes Publications, Park Ridge,NJ (1995). [7] S. Trasatti, P. Kurzweil, Platinum Met. Rev., 38 (1994) 46. [8] 陳元杰,廖秋峰,工業材料,178(2001)100. [9] C.Z.Yuan, L.R.Hou, L.Yang, D.K.Li, L.F.Shen, F.Zhang, J. Mater.Chem., 21(2011)16035-16041. [10] A. Lima, N. Bocchi, H. Gomes, M. Teixeira, Sensors 9 (2009) 6613. [11] R. Kumar, S. Sithambaram, S. Suib, J. Catal. 262 (2009) 304. [12] H.M. Huang, S. Mao, H. Feick, Science 292 (2001) 1897. [13] Q.Feng,H.Kanoh,and K.Ooj, “Manganese oxide porous crystals,”J.Master.Chem.9(1999)319-333. [14] M.M. Thackeray,Manganese oxides for lithium batteries,Prog. Solid State Chem. 25(1997)1. [15] C. Stanton, M. H. Steven, P.G.Timothy,Micropo. Mesopo. Mater., 76(2004)41-49. [16] K. K. Liu, M. A. Anderson, “Porous nickel oxide/nickel films for electrochemical capacitors”, J. Electrochem. Soc., 143 (1996) 124. [17] V. Srinivasan, J. W. Weidner, “An electrochemical route for making porous nickel oxide electrochemical capacitors”, J. Electrochem. Soc., 144 (1997) L210. [18] C. Lin, J. A. Ritter, B. N. Popov, Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors, J. Electrochem. Soc., 145 (1998)4097. [19] T. C. Liu, W. G. Pell, B. E. Conway, “Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance”, Electrochim. Acta, 44 (1999) 2829. [20] K. W. Nam, K. B. Kim, A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism, J. Electrochem.Soc.,149(2002)A346.211. [21] N. L. Wu, “Nanocrystalline oxide supercapacitors”, Mater. Chem. Phys., 75 (2002)6. [22] J. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization, Electrochim. Acta, 47 (2002)2381. [23] H. Y. Lee and J. B. Goodenough, “Supercapacitor Behavior with KCl Electrolyte”,J. Solid State Chem., 144 (1999)220. [24] H.Y. Lee, J.B. Goodenough, V. Manivannan, “Electrochemical capacitors with KCl electrolyte”, C. R. Chim., 2(1999) 565. [25] S.C.Pang, M.A.Anderson,“Novel electrode materials for thin -film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., 147(2000)444. [26] C.C.Hu, T.W.Tsou,“Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Commun., 4(2002)105. [27] Y. K. Zhou, B. L. He, W. J. Zhou, H. L. Li, J. Electrochem. Soc., 151(2004)A1052. [28] T. Bordjiba and D. Belanger, “Development of New Nanocomposite Based on Nanosized-Manganese Oxide and Carbon Nanotubes for High Performance Electrochemical Capacitors”, Electrochim. Acta, 55 (2010) 3428-3433. [29] J.M. Luo, B. Gao, X.G. Zhang, “High Capacitive Performance of Nanostructured Mn-Ni-Co Oxide Composites for Supercapacitor”, Mater. Res. Bull.,43 (2008) 1119-1125. [30] B. Babakhani, D.G. Ivey, “Anodic deposition of Manganese Oxide Electrodes with Rod-like Structures for Application as Electrochemical Capacitors”, J. Power Sources, 195 (2010) 2110-2117. [31] K. R. Prasad and N. Miura, “Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors”, Electrochem.Commun., 6 (2004) 1004-1008. [32] C.C.Hu,T.W.Tsou,“Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim Acta, 47(2002) 3523. [33] N.L.Wu,“Electrochemical capacitor of magnetite in aqueous electrolytes”, J. Power Sources, 113(2003)173. [34] Y.U. Jeong, A. Manthriram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes”, J. Electrochem. Soc., 149(2002)A1419. [35] G. Lodi, E. Sivieri, A. DeBattisti, and S. Trasatti, “Ruthenium dioxide-based film electrodes III. Effect of chemical composition and surface morphology on oxygen evolution in acid solutions”, J. Appl.Electrochem., 8 (1978) 135. [36] C.C. Hu and T.W. Tsou, “Capacitive and Textural Characteristics of Hydrous Manganese Oxide Prepared by Anodic Deposition”,Electrochim Acta, 47 (2002)3523-3532. [37] E.R.Pinero, V.Khomenko, E.Frackowiak, F.Beguin, “Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors”, J.Electrochem.Soc.,152(2005) 229-235. [38] Y.A.Attia, “Sol-Gel Processing and Applications,Plenum Press,New York,”(1994). [39] R.N. Reddy and R.G. Reddy, “Sol-gel MnO2 as an Electrode Material for Electrochemical Capacitors”, J.Power Sources, 124 (2003)330-337. [40] R.N.Reddy,R.G.Reddy,“Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material”, J.Power Source,132(2004)315-320. [41] J. N. Broughton, M. J. Brett, “Electrochemical capacitance in manganese thin films with chevron microstructure”, Electrochem. Solid State Lett., 5 (2002) A279. [42] J. N. Broughton, M. J. Brett, Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim. Acta, 49 (2004) 4439. [43] J. K. Chang and W. T. Tsai, “Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution”, J. Appl. Electrochem., 34 (2004) 953. [44] J. K. Chang, Y. L. Chen, and W. T. Tsai, “Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition”, J. Power Sources,135 (2004) 344. [45] C. C. Hu, T. W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Comm., 4 (2002) 105. [46] B. Babakhani, D.G. Ivey, “Anodic deposition of Manganese OxideElectrodes with Rod-like Structures for Application as Electrochemical Capacitors”, J.Power Sources, 195 (2010) 2110-2117. [47] G. Natta , G. Mazzanti , P. Corradini, Atti Accad Naz., Lince Rend., Sci. Fis., Mater. Nature.,( 1958). [48] H. Shirakawa , E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A.J. Heeger, “Electrical Conductivity in doped Polyacetylene,” J.Chem. Soc. Chem. Commum., 1098 (1977). [49] B. Lundberg, B. Sundqvist, Mol. Cryst. Liq. Cryst.,(1985). [50] K. Gurunathan, A. Vadivel Murugan , R. Marimuthu, U.P. Mulik, D.P. Amalnerkar, “Electrochemically Synthesised Conducting Polymeric Materials for Applications Towards Technology in Electronics Optoelectronics and Energy Storage Devices” Mater.Chem. and Phys., (1999). [51] Advanced Information for The 2000 Nobel Prize in Chemistry: conductive polymers , KUNGL. Vetenskapsakademien, the royal Swedish academy of sciences,(2000). [52] Y. J. Yuan, S. B. Adeloju and G. G. Wallace, Eur. Polym. J., 35 (1999) 1761. [53] L. Alcacer, Conducting Polymers Special Applications, D. Reidel Publishing Co., (1987) 192. [54] J. M. Margolis, Conductive Polymers and Plastics, Chapman and Hall, (1989) 33. [55] V. Bocchi, and G. P. Gardini, “Chemical Synthesis of Conducting Polypyrrole and Some Composites” J. Chem. Soc., Chem.Commun., (1986) 148. [56] A. Angeli, Gazz. Chim. Ital, 46 (1916) 279. [57] A. Angeli and L. Alessandri, Gazz. Chim. Ital, 46 (1916) 283. [58] K.K. Kanazawa, A.F. Diaz, and G.B. Street, “Organic Metals : Polypyrrole, a Stable Synthetic Metallic Polymer” J. Chem. Soc. ,Chem. Commun., (1979) 854-855. [59] K.K. Kanazawa, A.F. Diaz, and G.B. Street, “Polypyrrole: An electrochemically synthesized conducting organic polymer” Synth. Met., 1 (1979/80) 329-336. [60] J. Wang, K.G. Neoh, E.T. Kang, “Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films” Thin Solid Films, 446 (2004) 205-217. [61] P.H. Kim, J.D. Kwon, J.S. Kim, “The impregnated synthesis of polypyrrole into carbon aerogel and its applications to photovoltaic materials” Synth. Met., 142 (2004) 153-160. [62] G. Appel, D. Schmeiber, J. Bauer, M. Bauer, H.J. Egelhaaf, D. Oelkrug, “The formation of oligomers in the electrolyte upon polymerization of pyrrole” Synth. Met., 99 (1999) 69-77. [63] G. P. Gardini, Adv. Heterocycl. Chem., 15(1973)67. [64] M.G.Kanatzidls,“Conductive Polymer”Chem. Eng. News,(1990). [65] H. S.Nalwa, “Handbook of Organic Conductive Molecules and Polymer” John Wiley &Sons Ltd., 2 (1996) 416. [66] S. Machida, er al, Synth. Met., 24(1981)217. [67] M. Salmon, K. K. Kanazawa, A. F. Diza and M. Drounbi, J. Polym.Sci., Polym.Lett. Ed., 20(1982)187. [68] C. Jerome, D.E. Labaye, R. Jerome, “Electrochemical formation of polypyrrole nanowires” Synth. Met., 142 (2004) 207-216. [69] H. S.Nalwa, “Handbook of organic conductive molecules and polymers,” New York: John Wiley , 2(1997)429. [70] E. M. Genies, A. F. Diaz and G. Bidan, “Spectroelectrochemical study of polypyrrole films, ” J. Electroanal. Chem., 149(1983)101. [71] A. F. Diaz, K. K. Kanazawa., Chem. Scr., (1981). [72] R. Qian, J. Qiu and D. Shen, “Conducting Polypyrrole Electrochemically Prepared from Aqueous Solution” Synth. Met., 18 (1987) 13-18. [73] W. Werent and G. Wegner, Makromol. Chem., 188 (1987) 1465. [74] G. Wegner, W. Werent, D.T. Glatzhofer, J. Ulanski, Ch. Krohnke and M. Mohammadi, “Chemistry and Conductivity of some salts of Polypyrrole” Synth. Met., 18 (1987) 1-6. [75] T.F. Otero, J. Rodriguez, “Role of protons on the electrochemical polymerization of pyrrole from acetonitrile solution” J. Electroanal.Chem., 379 (1994) 513-516. [76] J. Mostany, B. R. Scharifker, “Direct microcalorimetric measurement of doping and overoxidation processes in polypyrrole”ElectroChim. Acta. ,(1996). [77] J. Migdalski, T. Blaz, A Lewenstam, “Conducting polymer-based ion-selective electrodes ”Anal.Chim. Acta, (1996). [78] 高志勇,陳耿陽,吳富其,江萬爵,賴志坤,“超高電容器製程技術之簡介”,工業材料,166( 2000)113. [79] E. Glieadi, E. Kirowa-Eisner, and J. Penciner, “Interfacial electrochemistry, an experimental approach”, Addison-Wesley Publish Company, INC., (1975). [80] H. E. Backer, US patent 2800616, “Low voltage electrolytic capacitor”,granted (1957). [81] C. Peng, S. Zhang, D. Jewell, G Z. Chen, “Carbon nanotube and conducting polymer composites for supercapacitors”, Progressin Natural Science, 18 (2008) 777-788. [82] E. Conway, Electrochemical Super capacitors, Kluwer-Plenum, NewYork (1999). [83] B.E. Conway, “Transition from Supercapacitor to Battery Behavior in Electrochemical Energy Storage”, J. Electrochem. Soc.,138(1991) 1539-1548. [84] J. Mozota, B. E. Conway, Electrochem. Acta., 28(1983)9. [85] I. Tanahashi, A. Yoshida, and A. Nishino, “Preparation and Characterization ofActivated Carbon Tablets for Electric Double-layer Capacitors”, Bull. Chem. Soc. Jpn. 63 (1990) 2755-2758. [86] S. Sarangapani, B. V. Tilak, and C. P. Chen, “Materials for electrochemical capacitors”, J. Electrochem. Soc., 143 (1996) 3791. [87] R. Ishimatsu, F. Shigematsu, T. Hakuto, N. Nishi, and T. Kakiuchi,“Structure of the electrical double layer on the aqueous solution side of the polarized interface between water and a room-temperature ionic liquid, tetrahexylammonium bis(trifluoromethylsulfonyl)imide”, Langmuir, 23(2007) 925. [88] K. K. Liu, M. A. Andrea, J. Electrochem. Soc., 143(1996)124. [89] Juan Li, Tingli Que, Jianbin Huang, Mater. Res. Bull., 48(2013)747-751. [90] Y.P.Lin, C.B. Tsai, W.H.Ho, N.L.Wu,Mater. Chem.andPhys.,130 (2011)367-372. [91] A. B. Yuan, X. L. Wang, Y. Q. Wang and J. Hu, Energ. Convers. Manage., 51(2010)2588. [92] J. F. Zang and X. D. Li, J. Mater. Chem.,21(2011) 10965. [93] J. Xu, L. Gao, J. Y. Cao, W. C. Wang and Z. D. Chen, J Solid StateElectrochem., 15(2011) 2005. [94] T. Shinomiya, V. Gupta, and N. Miura, “Effects of electorchemical-deposition method and microstructure on thecapacitive characteristics of nano-sized manganese oxide”, Electrochim. Acta,51(2006) 4412. [95] J.Nwman, “Electrochemical Systems”John Wiley&Sons(2004). [96] 許樹恩、吳恩伯,X光繞射原理與材料結構分析,中國材料科學學會,(1993). [97] 汪建民主編,“材料分析”,中國材料科學學會,(2001). [98] 陳力俊,材料電子顯微鏡學,科儀叢書,(1994). [99] Y. Huang, Y.Lin, W.Li, Electrochim. Acta, 99(2013) 161-165. [100] R. A. Jeong, G. J. Lee, H. S. Kim, K. Ahn, K. Lee and K. H. Kim,Synth. Met., 98 (1998) 9.
摘要: 
二氧化錳具有多種不同奈米晶體結構,可應用於電化學電容器而具有不錯的比電容值(Specific capacitance)和電容穩定性(Stability)等優點,因此是一個具有相當潛力之電化學電容器電極材料。近年來為了有效提升二氧化錳比電容值及穩定性,其改進重點在於(1)如何控制其結晶型態,形成多晶或是非結晶的型態(2)控制其表面形貌,提高金屬氧化物之比表面積。因此本研究主要的目的是製備複合式電極材料,藉由引進導電高分子之優點,期望增加電化學反應的活性位置,得到較佳的電容特性及比電容量。
本研究分別製備了孔道型式和層狀型式之二氧化錳奈米結構材料,這些不同型態之二氧化錳結構分別為奈米棒狀、片狀與繡花球狀。並於低溫下使用化學合成方法摻混導電高分子聚吡咯(Polypyrrole),製備成二氧化錳-聚吡咯複合材料,藉用XRD、SEM、TEM、IR、BET等儀器,於不同二氧化錳形貌及摻混不同比例導電高分子對其做特性分析,最終藉由循環伏安法(CV)與恆電流充放電測試法(GC)來檢測電容特性及電化學穩定性。由實驗結果顯示,片狀δMnO2-5wt%PPy複合材料具有較高比表面積為175m2/g,於1M硫酸鈉電解液中使用循環伏安法進行電化學分析,在掃描速率為2mv/s下,片狀δMnO2-5wt%PPy複合式電極擁有最佳比電容值,為426F/g。

There are various nano-crystal structures of manganese dioxide ,can be used as electrochemical capacitors with the advantages such as good specific capacitance and stability. In recent years, there are two main issues to be focused on in order to improve effectively the specific capacitance and stability of the manganese dioxide, (1) how to control the crystalline patterns such as polycrystalline, even amorphous pattern; and (2) how to control the surface morphology to increase the specific surface area of the metal oxides. Thus, a composit electrode material has been synthesized in this study. It is hopefully, with the introduction of the advantages of the conductive polymers, to increase the active sites through electrochemical reactions and to obtain the better capacitor properties and the specific capacitances.
In this study, we have prepared materials with the porous and layered nano-crystal structures of manganese dioxides. These various types of manganese dioxide structures are nanorods, flakes and hydrangea-like spheres. At low temperature, a mixture of the manganese dioxide-polypyrrole compound material has been prepared and performed the characterization of various manganese dioxide morphologies and different mixing ratios of conductive polymers by XRD, SEM, TEM, IR and BET techniques. Finally, the capacitor properties and the electrochemical stabilities were detected by cyclic voltammetry (CV) and Galvanostatic charge-discharge test (GC). According to the experimental results, a high specific surface area of 175m2/g was achieved for the flakes δMnO2-5wt%PPy compound materials. Electrochemical characterization was performed using cylic voltammetry in 2mv/s scan rate and in 1mol/L Na2SO4 aqueous solution electrolyte. A maximum specific capacitance of approximately 426F/g was obtained for the flakes δMnO2-5wt% PPy compound materials.
URI: http://hdl.handle.net/11455/3037
其他識別: U0005-2006201317170500
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.