Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3039
標題: 以三嗪為核心之星狀含噻吩共軛衍生物合成及其光伏特性研究
Synthesis and Photovoltaic Properties of Triazine-Cored Star Shaped Conjugate Thiophene Derivatives
作者: 黃倩宜
Huang, Chien-Yi
關鍵字: thionphene vinylene;triphenylamine;三苯胺;咔唑;異質介面有機太陽能電池;carbazole;thionphene vinylene;photovoltaic performance;bulk heterojunction cell
出版社: 化學工程學系所
引用: 1. 經濟部能源局,國際油價情勢分析年報2012。 2. 劉佳怡, CompoTech Asia, 2007,08.。 3. M. Gratzel, Inorg. Chem., 2005, 44, 6841. 4. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Science, 2011, 334, 629. 5. C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett., 2004, 384, 372. 6. W. J. E. Beek, Martijn, M. Wienk, Ren’e A. J. Janssen, J. Mater. Chem., 2005, 15, 2985. 7. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science, 2002, 295, 2425. 8. K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, and C. A. Grimes, Langmuir, 2007, 23, 12445. 9. 張正華;李陵嵐;葉楚平;楊平華, 有機太陽電池與塑料太陽電池, 化學工業出版社,北京, 2006. 10. G. Yu, C. Zhang, A. J. Heeger, Appl. Phys. Lett., 1993, 64, 1540. 11. C. W. Tang, Appl. Phys. Lett., 1986, 48, 183. 12. J. J. M. Halls, K. Pichler, and R. H. Friend, Appl. Phys. Lett.,1996, 68, 3120. 13. F. Yang, M. Shtein, and S. R. Forrest, Nat Mater, 2005, 4, 37. 14. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science,1992, 258, 1474. 15. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science,1995, 270,1789. 16. F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85. 17. J. Xue, S. Uchida, B.P. Rand, and S. R. Forrest, Appl. Phys. Lett., 2004, 85, 5757. 18. J. Kim, K. Lee, N. .E. Coates, D.Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science, 2007, 317, 222. 19. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li and Y. Yang, Nature Communications, 2012, 4, 1446. 20. K. M. Su, K. J. Sung, C. J. Cheol, S. Max; L. J. Guo, and K, Jinsang, Appl. Phys. Lett. 2007, 90, 123113. 21. K. M. Coakley and M. D. McGehee, Chem. Mater. 2004, 16, 4533. 22. R. L. Uy, S. C. Price, W. You, Macromol. Rapid Commun. 2012, 33, 1162. 23. C. Groves, Energy Environ. Sci., 2013, 6, 1546. 24. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater., 2006, 18, 789. 25. Y. Zhang, J. Zou, H. L. Yip, K.S. Chen, D. F. Zeigler, Y. S., and Alex K.-Y. Jen, Chem. Mater. 2011, 23, 2289. 26. J. Roncali, Acc. Chem. Res., 2009, 42, 1719. 27. S. Kim, B. G. Kim, and J. Kim, Appl. Mater. and Interfaces., 2009,1,1264. 28. Y. Sun, G. C.Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nat. Mater., 2012, 11, 44. 29. T. S. van der Poll, J. A. Love , T. Q. Nguyen, and G. C. Bazan, Adv. Mater., 2012, 24, 3646. 30. C. He, Q. He, Y. Yi, G. Wu, F. Bai, Z. Shuaia, and Y. Li, J. Mater. Chem., 2008, 18, 4085. 31. J. Zhang, Y. Yang, C. He, Y. He, G. Zhao, Y. Li., Macromolecules, 2009, 42, 7619. 32. J. Zhang, D. Deng, C. He, Y. He, M. Zhang, Z. G. Zhang, Z. Zhang, and Y. Li, Chem. Mater., 2011, 23, 817. 33. G. Wu, G. Zhao, C. He, J. Zhang, Q. He, X. Chen, Y. Li, Solar Energy Mater. & Solar Cells, 2009, 93, 108. 34. G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, and H. Takakura, Solar Energy Mater. & Solar Cells, 2008, 92, 371. 35. B. Lim, K. J. Baeg, H.G. Jeong, J. Jo, H. Kim, J. W. Park, Y. Y. Noh, D. Vak, J. H. Park, J. W. Park, and D. Y. Kim, Adv. Mater. 2009, 21, 2808. 36. S. K. Son, B. S. Kim, C. Y. Lee, J. S. Lee, J. H. Cho, M. J. Ko, D. K, Lee, H. Kim, D. H. Choi, K. Kim, Solar Energy Mater. & Solar Cells, 2012, 104, 185. 37. H. Zhou, L. Yang, S. Stoneking, and W. You, Appl. Mater and Interfaces, 2010, 2,1377. 38. H. Zhou, L. Yang, S. C. Price, K. J. Knight, and W. You, Angew. Chem. 2010, 122, 8164. 39. 王杏如, 工業材料, 2012, 307, 111. 40. J. Roncali, P. Fre`re, P. Blanchard, Re’mi de Bettignies, M. Turbiez, S. Roquet , P. Leriche, and Y. Nicolas, Thin Solid Films, 2006, 511, 567. 41. S. Karpe, A. Cravino, P. Frere, M. Allain, G. Mabon, and J. Roncali, Adv. Funct. Mater. 2007, 17, 1163. 42. Y. Kubo, K. Watanabe, R. Nishiyabu, R. Hata, A. Murakami, T.Shoda, H.Ota, Org. Lett. 2011,13, 17. 43. S. Roquet, A. Cravino, P. Leriche, O. Ale’veˆque, P. Fre` re, and J. Roncali, J.Am. Chem. Soc., 2006, 128, 3459. 44. J. A. Mikroyannidis, S. S. Sharma, Y. K. Vijay, and G. D. Sharma, Appl. Mater. Interfaces, 2010, 2, 270. 45. M. Mastalerz, V. Fischer, C. Q. Ma, R. A. J. Janssen, P. Bauerle, Org. Lett. 2009, 11, 4500. 46. F. Zhang, W. Mammo, L. M. Andersson, S. Admassie, M. R. Andersson, O. Inganas, Adv. Mater., 2006, 18, 2169. 47. C. H. Cheon, S. H. Joo, K. Kim, H. W. Shin, and Y. R. Kim. Macromolecules. 2005, 38, 6336. 48. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 2004, 14, 1005. 49. H. J. Wang, Y. P. Chen, Y. C. Chen, C. P. Chen, R. H. Lee, L. H. Chan, R. J. Jeng, Polymer, 2012, 53, 4091. 50. A. Tang, L. Li, Z. Lu, J. Huang, H. Jiu, C. Zhan, Z. Tan, Y. Li, J. Yao, J. Mater. Chem. A, 2013, 1, 5747. 51. C. Goh, R. J. Kline, and M. D. McGehee, Appl. Phys. Lett., 2005, 86, 122110 . 52. J. Roncali et al., Thin Solid Films, 2006, 511, 567. 53. D. Sahu, C-H Tsai, H-Y Wei, K-C Ho, F-C Chang, and C-W Chu, J. Mater. Chem., 2012, 22, 7945. 54. Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, Y. Chen, Adv. Mater. 2011, 23, 5387.
摘要: 
本研究以拉電子基團三嗪 (triazine) 為核心導入thionphene vinylene 為π-bridge,延長分子之有效共軛長度,使得材料對光吸收更紅位移;並於末端基導入兩種不同推電子基,一是可提升溶解度並增加電洞傳輸速率的三苯胺(triphenylamine) ,另一個為導入具有良好平面性,可避免材料因結構的扭曲而造成載子傳輸能力下降的稠環芳香族系列的咔唑 (carbazole) ,形成D-Π-A 共軛系統,分別合成出星狀分子 TTVTPA 與 TTVCZ。經由 H-NMR 鑑定確認化學結構,並經 TGA 與 DSC 進行熱性質分析,獲得熱裂解溫度分別為432.2 ℃ 及428.4 ℃ ,玻璃轉換溫度為139.8 ℃ 及168.6 ℃ ,兩材料均具有優越的熱穩定性。經由 UV-vis 吸收光譜分析,結果顯示 TTVTPA 於薄膜狀態下之最大吸收波長在312.5 nm與488 nm,而 TTVCZ 於薄膜狀態下之最大吸收波長在302.5nm與446 nm,兩者均在可見光區有明顯的吸收,由吸收波長計算出TTVTPA 與 TTVCZ 的能隙分別為 2.05與 2.09 eV。利用循環伏安法分析 TTVTPA 與 TTVCZ 之HOMO 分別為 -5.56 與 -5.67 eV,而LUMO分別為 -3.49 及 -3.58 eV。 TTVTPA 與 TTVCZ 分別摻混不同比例之 PC61BM 製作成薄膜,以AFM觀察表面薄膜型態,當 TTVTPA:PC61BM 摻混比例在1:7 (w/w )及 TTVCZ:PC61BM 摻混比例在 1:3 (w/w) 時,星狀分子與 PC61BM 的分佈可達最適值,所呈現的奈米級微相分離為最合適的相分離尺吋。此外,當 TTVTPA 摻混PC61BM 為1:7,(w/w) 及TTVCZ 摻混PC61BM 為1:3,(w/w)時,具有較佳的電洞傳輸能力,分別為 2.18×10-5 (cm2/V.s) 與1.59×10-5 (cm2/V.s),而在光伏特性上的表現也最佳,TTVTPA 所製得之電池其開路電壓VOC 為 0.68 V 、短路電流JSC 為 4.80 mA/cm2 、填充因子FF 為0.36 及光電轉換效率PCE 為1.18 % ,而 TTVCZ 所製備之電池其開路電壓VOC為0.77 V 、短路電流JSC為 3.82 mA/cm2 、填充因子FF為0.32 及光電轉換效率PCE為 0.94 % 。以同樣的比例將TTVTPA 與TTVCZ 分別摻混PC71BM後,TTVTPA 電池之開路電壓VOC值爲0.69 V 、電流密度Jsc值爲10.57 mA/cm2 、填充因子FF值爲0.34 及光電轉換效率PCE值爲 2.48 % ,而TTVCZ其開路電壓VOC為0.78 V 、短路電流JSC為 6 mA/cm2 、填充因子FF為0.31 及光電轉換效率PCE為 1.45 %。研究顯示,TTVTPA/PC71BM 複合膜相較於TTVCZ/PC71BM 複合膜所製作之光伏元件有較佳的光伏特性。

The solution processable star-shaped organic small molecules TTVTPA and TTVCZ with three D-Π-A branches based on trazine core as acceptor unit (A), triphenylamine or carbazole end group as donor (D) umit, thionphene vinylene as Π–conjugation bridge were synthesized for used as photoenergy conversion layer in bulk-heterojunction organic solar cells (OSCs). TTVTPA and TTVCZ are soluble in common organic solvents. Excellent thermal stability was observed for TTVTPA and TTVCZ. The TTVTPA and TTVCZ shows two absorption bands in the range of 250-600 nm, corresponding to the band gaps of 2.05 and 2.09 eV, respectively. The performance of the OSCs was modified significantly with varied of TTVTPA (or TTVCZ) /fullerene derivative (PC61BM or PC71BM) weight ratio. A power conversion efficiency of 2.48 %, a short-circuit current density of 10.57 mA/cm2, an open-circuit voltage of 0.69 V, and a fill factor of 0.34 were observed for OSC based on the active layer of TTVTPA/PC71BM (1:7, w/w).
URI: http://hdl.handle.net/11455/3039
其他識別: U0005-2607201321052500
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.