Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30440
標題: 卵形捕植蟎Amblyseius ovalis捕食二點葉蟎Tetranychus urticae之功能反應及二者之空間分佈
Functional responses of Amblyseius ovalis (Acari: Phytoseiidae) preying on Tetranychus uritcae (Acari: Tetranychidae) and their spatial distribution
作者: 王前智
Wang, Chain-Ji
關鍵字: predator-prey relationship;捕食者-食餌關係;functional response;spatial;功能反應;空間分佈;卵形捕植蟎;二點葉蟎
出版社: 昆蟲學系
摘要: 
卵形捕植蟎 Amblyseius ovalis (Evans)及二點葉蟎 Tetranychus
urticae Koch 之田間分佈,依 Index of dispersion (ID) ,Green''''s
coefficient of dispersion (Cx),Lloyd''''s mean crowding index (mc)
,Llotd''''s patchiness index (mc/m),Morisita''''s coefficient of
dispersion (Iσ, Iβ),Taylor''''s power law, regression (a, b)及
Iwao''''s patchiness regression (α, β) 等七種方法測得各週各齡期的
分佈指數或係數。依該等指數或係數推論得知二點葉蟎密度越高聚集程度
越強,均勻及逢機分佈則僅在低密度時出現;卵形捕植蟎族群則傾向逢機
或均勻分佈型。依 Iwao''''s α及β值顯示二點葉蟎呈小聚落 (patchy) 聚
集,且對其存活有利;卵形捕食蟎之卵及幼蟎的存在,對同一聚落中其他
卵或幼蟎之出現有排斥現象,顯示了該捕食蟎產卵後,遷出該小聚落而另
尋鄰近小聚落產卵之行為。捕食者-食餌間之關係,經由卵形捕植蟎各齡
期對二點葉蟎各齡期之捕食率及捕食率曲線關係,呈現出 Holling''''s 第
Ⅱ型及第Ⅲ型功能反應,利用 Holling''''s disk equation model以非線性
迴歸分析法求取 A. ovalis 在不同 T. urticae密度下之捕食率曲線,再
由該等不同條件下之功能反應,計算得捕食者之各攻擊率(attack rate,
a)及處理時間(Handling time, Th)之理論值。攻擊率及處理時間之不
同理論值顯示了捕食率受其本身的齡期(stage),性別(sexes),取食
經歷(feeding history),食餌的種類,齡期及性別,溫度,棲所材質
及棲所大小等之影響;依該等功 能反應,捕食率曲線,攻擊率及處理時
間等之差異顯著性及大小,討論 A. ovalis 之捕食行為及其與葉蟎密度
間之關係。由每日每雌產卵量受食餌密度影響之迴歸分析結果,求取理論
最高產卵潛能的間隔係數值 (egg reproductive index, b1)及處理時間
(Th)值;再依此二指數間的比值,獲卵形捕食蟎最大捕食-產卵轉換率
,評估得葉蟎雌成蟎之轉換率最高雄成蟎轉換率最低。

The population distributions of Amblyseius ovalis (Evans) and
Tetranychus urticae Koch were evaluated by the values of
indices and their distribution─uniform, random, and
aggregative distribution types, according to the hypotheses of
(1) index of dispersion (ID), (2) Green''''s coefficient of
dispersion (Cx), (3) Lloyd''''s mean crowding index (mc), (4)
Lloyd''''s patchiness index (mc/m), (5) Morisita''''s coefficient of
dispersion ( Iδ, Iβ), (6)Taylor''''s power law regression with
intercept (㏒a) and sloped (7) Iwao''''s patchiness regression
(α, β). The frequencies of distribution types of mites''''
populations mearsured by week or by stages were accordingly
rearranged and utilized to assess the appropriate type of
distributions. A. ovalis and T. urticae population in the
field were either aggregative or random type. Predator-prey
relationship was demostrated by A. ovali feeding on T. urticae.
The responses of daily predation rate and predation rate curve
of A. ovalis on 8 prey densities of T. urticae showed a Holling''''
s typeΠ and type Ⅲ responses─functional responses of
predator. Non-linear regression model was used to fit daily
predation rates on the different prey densities and found 43
functional response equations which included the independent
variables of (1) predator''''s stages, sexes, and feeding history
prey'''' s species, stages, and sexes, (3) habitat substrates and
sizes, and (4) temperatures. The fitted regression equations
were used to find out the theoretical attack rates (a) and
handling time (Th) under different tested conditions. Those a''''
s and Th''''s were also variate with the tested conditions by
which the interactions and relations between the predator and
the prey were interpreted and discussed.
URI: http://hdl.handle.net/11455/30440
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.